Overview of Numerical Algorithms and Software for Extreme-Scale Science

Presented to **ATPESC 2020 Participants**

Lois Curfman McInnes **Argonne National Laboratory**

Mark C. Miller Lawrence Livermore National Laboratory

Date 08/04/2020

ATPESC Numerical Software Track

Sandia National

Outline

- Logistics for the day
- Intro to numerical algorithms and software for extreme-scale science
- Gallery of highlights: HPC numerical software packages
- Hands-on example: "Hello world" for numerical packages

Your home bases for the day: ATPESC Track 5 Numerical Algorithms and Software for Extreme-Scale Science

- Main ATPESC Agenda
 - <u>https://extremecomputingtraining.anl.gov/agenda-2020/#Track-5</u>
 - slides (pdf) and presenter bios
- Math Packages Training Site
 - session abstracts, links to parallel breakout rooms, hands-on lessons, more
 - <u>https://xsdk-project.github.io/MathPackagesTraining2020/agenda</u>

Agenda

https://extremecomputingtraining.anl.gov/agenda-2020/#Track-5

Lois Curfman McInnes, ANL

and Mark Miller, LLNL

Jonathan Hu, SNL

Ghysels, LBL

Ulrike Yang, LLNL

Ghysels, LBL

Sherry Li, LBL and Pieter

and Christian Glusa, SNL

Sherry Li, LBL and Pieter

9:30 Introduction to Numerical Libraries and Virtual Logistics

10:30 Session 1

- ROOM FRONTIER: Structured Discretization (with AMReX)
 Ann Almgren, LBL and Don Willcox, LBL
- ROOM AURORA: Unstructured Discretization (with MFEM/PUMI) Mark Shephard, RPI and Aaron Fisher, LLNL
- ROOM PERLMUTTER: Iterative
 Solvers+Preconditioners
 (with Trillinos/MueLu)
- ROOM EL CAPITAN: Direct Solvers (with SuperLU/Strumpack)
- 11:30 Break
- 11:45 Session 2
 - ROOM FRONTIER: Structured Discretization (with AMRex)
 Ann Almgren, LBL and Don Willcox, LBL
 - ROOM AURORA: Unstructured Discretization (with MFEM/PUMI)
 Mark Shephard, RPI and Aaron Fisher, LLNL
 - ROOM PERLMUTTER: Iterative
 Solvers+Algebraic Multigrid
 (with HYPRE)
 - ROOM EL CAPITAN: Direct Solvers
 (with SuperLU/Strumpack)

12:45 p.m. Lunch

1:45 *Panel Discussion*: Contributing to the Numerical Package Community

Panel Moderator: Mark Miller, LLNL

Panelists: Jonathan Hu, SNL; Richard Mills, ANL; Sherry Li, LBL; Cameron Smith, RPI; and Ulrike Yang, LLNL

2:35 Session 3

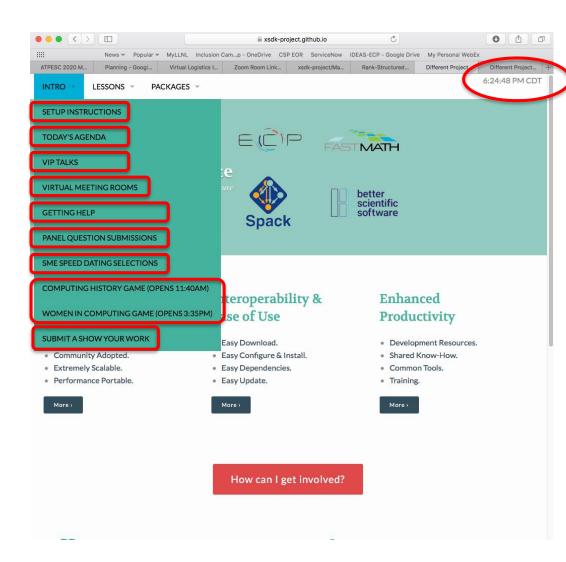
- ROOM FRONTIER: Nonlinear Solvers
 (with PETSc)
 Richard Mills, ANL
- ROOM AURORA: Optimization Alp Dener, ANL (with TAO)
- ROOM PERLMUTTER: Time Integration Dan Reynolds, SMU (with SUNDIALS)
- ROOM EL CAPITAN: Iterative Jonathan HU, SNL and Solvers+Preconditioners Christian Glusa, SNL (with Trillinos/MueLu)

3:25 Break

3:40 Session 4

- ROOM FRONTIER: Nonlinear Solvers
 (with PETSc)
- ROOM AURORA: Optimization Alp Dener, ANL (with TAO)
- ROOM PERLMUTTER: Time Integration Dan Reynolds, SMU (with SUNDIALS)
- ROOM EL CAPITAN: Direct Solvers Sherry Li, LBL and Pieter (with SuperLU/Strumpack) Ghysels, LBL
- 4:30 Working with Numerical Packages in Practice5:00 Adjourn5:15 Optional Activity: SME speed-dating in pairs
- 6:35 Optional Activity Concludes

Ann Almgren, LBL


Mark Miller, LLNL

Agenda Overview

to your interests See Synopses from Agenda Start Activity Virtual Room CDT Structured Discretization (AMReX) Main room 9:30 Introduction Unstructured Discretization (MFEM/PUMI) Iterative Solvers & Preconditioners (Trilinos/MueLU) 10:30 Parallel Session #1 Four parallel rooms • Direct Solvers (SuperLU/Strumpack) 11:30 Break Structured Discretization (AMReX) Parallel Session #2 Unstructured Discretization (MFEM/PUMI) 11:45 Four parallel rooms • Iterative Solvers & Preconditioners (hypre) 12:45 Lunch • Direct Solvers (SuperLU/Strumpack) • Nonlinear Solvers (PETSc) Panel Main room 1:45 • Optimization (TAO) **´#3**) • Time Interation (SUNDIALS) 2:35 Parallel Session #3 Four parallel rooms Iterative Solvers & Preconditioners (Trilinos/MueLU) 3:25 Break Nonlinear Solvers (PETSc) Four parallel rooms 3:40 Parallel Session #4 • Optimization (TAO) • Time Interation (SUNDIALS) 4:30 Wrap-up Main room • Direct Solvers (SuperLU/Strumpack) 5:00 Break 5:15 Subject Matter Expert (SME) Individual SME rooms Speed Dating (optional)

Mix-n-Match topics

https://xsdk-project.github.io/MathPackagesTraining2020/

- Clock
- Setup instructions
- Today's agenda
- VIP talks
- Virtual meeting rooms
- Getting help
- Panel question submission
- SME speed dating selections
- Break games
- Submit a "Show your work"

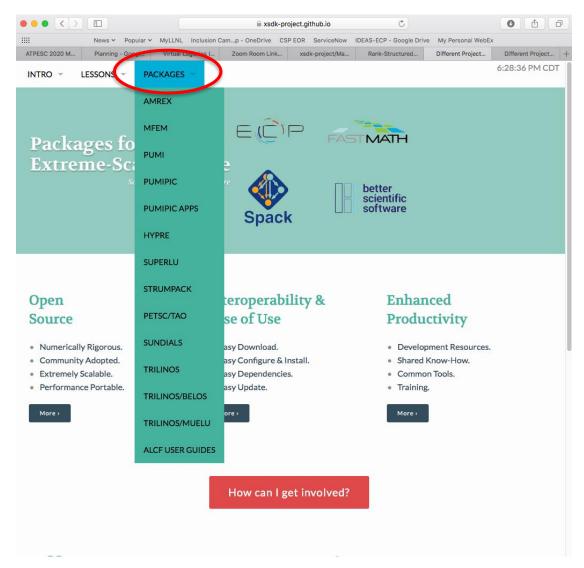
Today's agenda

https://xsdk-project.github.io/MathPackagesTraining2020/agenda

Structured Discretization (with AMReX) Slides

Block-structured adaptive mesh refinement (AMR) provides a natural framework in which to focus computing power on the most critical parts of the problem in the most computationally efficient way possible. AMReX supports the development of block-structured AMR algorithms for solving systems of partial differential equations (PDE's) and other algorithms that require structured mesh and/or particle discretizations. We will begin with an overview of block-structured AMR, including several different time-stepping strategies, and then discuss the features of AMReX we might want to use to solve a multiphysics problem on machines from laptops to supercomputers. Hands-on exercises will include passive scalar advection with time-dependent adaptivity, the use of native linear solvers to impose incompressibility on a flow around obstacles, and "AMReX-Pachinko", which demonstrates the interaction of particles with objects.

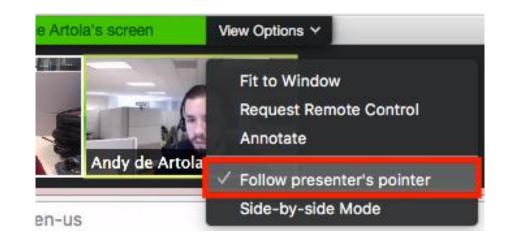
Iterative Solvers & Preconditioners (with MueLu) Slides


In this session, attendees will learn about linear solvers and preconditioners available in the Trilinos project. We will focus on Krylov solvers such as conjugate gradients (CG) and generalized minimum residual (GMRES); simple preconditioners like Jacobi, Gauss-Seidel, and Chebyshev polynomials; and scalable aggregation-based algebraic multigrid preconditioning. The two hands-on lessons will provide an opportunity to run a variety of stand-alone examples that demonstrate some of the many Trilinos solver capabilities on a model linear problem.

Mix-n-Match topics to your interests See Synopses from Agenda

	CDT Start	Mins	Торіс	Speaker(s)	Virtual Venue
	09:30	55	Intro. to Numerical Libraries	Lois Curfman McInnes Mark Miller	Main-Room
	10:25	5	Telecon Transition		
	10:30	60	Parallel Session One		
•		- (Structured Discretization (with AMReX)	Ann Almgren Don Willcox	Frontier
			Unstructured Discretization (with MFEM/PUMI)	Aaron Fisher Mark Shephard	Aurora
		\sim	Iterative Solvers & Preconditioners (with MueLu)	Jonathan Hu Christian Glusa	Perlmutter
			Direct Solvers (with SuperLU/Strumpack)	Sherry Li Pieter Ghysels	El-Capitan

https://xsdk-project.github.io/MathPackagesTraining2020/

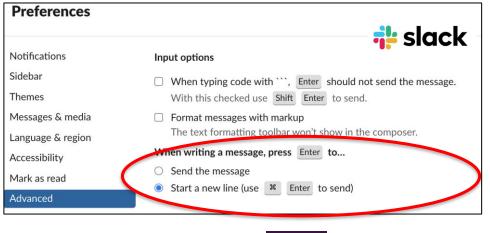

- Hands-on Lessons
- Packages

8 ATPESC 2020, July 26 - August 7, 2020

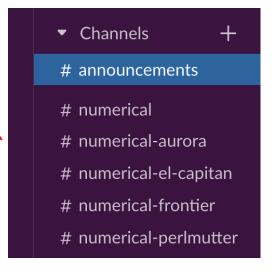
Using Zoom

- Please stay muted unless asked to un-mute
- We're using Slack for chat, not Zoom's chat
- "Follow presenter's pointer" might be helpful
 - Available only if NOT in "Fit to Window" mode

- Download slide PDFs from ATPESC web site (agenda page) ahead of presentation as a backup
- Other useful tips
 - Better performance if also disable your video
 - Stop other streaming activity in your home if you can



Using Slack


- Recommend using the desktop app, but browser ok too
- #numerical channel
 - For all chat during presentations in "Main room"
 - For all chat outside any specific parallel session
 - For general help
 - Recommend using the thread option to help keep track of discussions on subtopics
- #numerical-<room-name> (e.g., #numerical-aurora)
 - For all chat during presentations in the associated room
 - Room chat restricted to discussion on the current presentation topic only
 - To continue questions/discussion on topics presented earlier in the day, transition to the **#numerical** channel or direct slack messages to individuals in the ATPESC numerical software team

Tip: Consider setting Preferences to customize when to send

Getting help ("Getting help" menu item)

- #numerical Slack channel
- IT Support Rooms under the "Getting Help" menu

Getting help

Use the #numerical slack channel for general help and it support.

Launch #numerical Slack in new browser window or desktop app

IT Support Zoom Rooms

Also individual tech support is available from specialists in these Zoom rooms...

- Ampere
- Volta
- Navi (morning sessions only; viz-tool issues only)
- Vega (morning sessions only; viz-tool issues only)

As a last resort, you can try emailing...

- Satish Balay,
- Cameron Smith
- Mark Miller

During breaks and lunch

Row 1:

Row 2:

Row 3:

Row 4:

Not shown:

Dan Reynolds

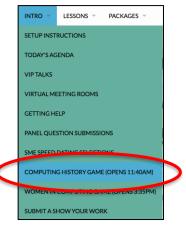
 Don Willcox Ann Almgren Satish Balay

 Pieter Ghysels Christian Glusa Mark Miller

 Aaron Fisher · Sherry Li

Sara Osborn

Ulrike Yang


 Richard Mills Jonathan Hu

 Cameron Smith Carol Woodward

Alp Dener

 David Gardner Mark Shephard

- During mid-morning and mid-afternoon 15-minute breaks, we will keep Zoom meetings open and allow unmuting for some informal dialog for those interested.
- During lunch will do the same with the "Main Room" again, for anyone interested.
- Some simple ٠ computing history games for those interested
 - Ignore the points, scoring

The ATPESC Team 2020 on Zoom

Track 5: Numerical Algorithms and Software: Tutorial Goals

Provide a basic understanding of a variety of applied mathematics algorithms for scalable linear, nonlinear, and ODE solvers, as well as discretization technologies (e.g., adaptive mesh refinement for structured and unstructured grids) and numerical optimization

Provide an overview of software tools available to perform these tasks on HPC architectures ... including where to go for more info

3.

1.

2.

Practice using one or more of these software tools on basic demonstration problems

This presentation provides a high-level introduction to HPC numerical software

- How HPC numerical software addresses challenges in computational science and engineering (CSE)
- Toward extreme-scale scientific software ecosystems
- Using and contributing: Where to go for more info

Why is this important for you?

- Libraries enable users to focus on their primary interests
 - Reuse algorithms and data structures developed by experts
 - Customize and extend to exploit application-specific knowledge
 - Cope with complexity and changes over time
- More efficient, robust, reliable, scalable, sustainable scientific software
- Better science, broader impact of your work

The ATPESC Team 2020

Extreme-scale numerical algorithms and software Integrated lectures and hands-on examples, panel session, individual discussions ... and more!

Aaron Fisher, LLNL

Ann Almgren, LBL

Alp Dener, ANL

Christian Glusa, SNL

Lois Curfman McInnes, ANL

Mark Miller, LLNL

Cameron Smith, RPI

Carol Woodward, LLNL

Richard Mills, ANL

Dan Reynolds, SMU

Mark Shephard, RPI

Don Willcox, LBL

Thank you to David Gardner and Sara Osborn, LLNL

Additional contributors to gallery of highlights:

Various HPC package developers

15 ATPESC 2020, July 26 – August 7, 2020

Jonathan Hu, SNL

VIPs of ATPESC Extreme-Scale Numerical Software Track

Jim Demmel, UC Berkeley [bio]

- Communication-Avoiding Algorithms for Linear Algebra, Machine Learning, and Beyond
 - ATPESC 2019 [slides, video]
 - ENLA Seminar, June 2020 [video]

- Jack Dongarra, Univ of Tennessee [bio]
 - Adaptive Linear Solvers and Eigensolvers, ATPESC 2019 [slides, video]

David Keyes, KAUST [bio]

- The Convergence of Big Data and Large-scale Simulation: Leveraging the Continuum, ATPESC 2019 [slides, video]
- Algorithmic Adaptations to Extreme Scale Computing, ATPESC 2018
 [slides, video]

This work is founded on decades of experience and concerted team efforts to advance numerical software ...

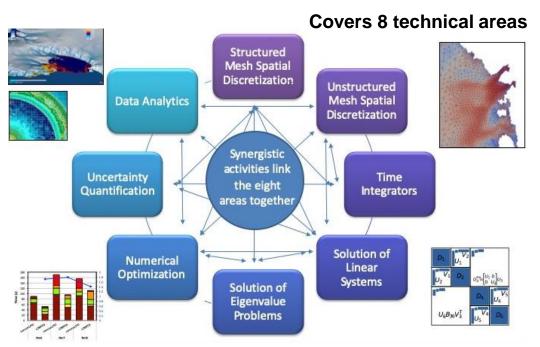
https://fastmath-scidac.llnl.gov

- Exascale Computing Project
- FASTMath SciDAC Institute
- Developers of xSDK packages

... While improving software productivity & sustainability as key aspects of advancing overall scientific productivity

- IDEAS Software Productivity Project
- Better Scientific Software Community

See also Track 7: Software Productivity and Sustainability (Aug 6)



https://e4s.io

FASTMath: Frameworks, Algorithms & Scalable Technologies for Mathematics https://fastmath-scidac.llnl.gov

FASTMath Goals:

- Develop advanced numerical techniques for DOE applications
- Deploy high-performance software on DOE supercomputers
- Demonstrate basic research technologies from applied mathematics
- Engage and support of the computational science community

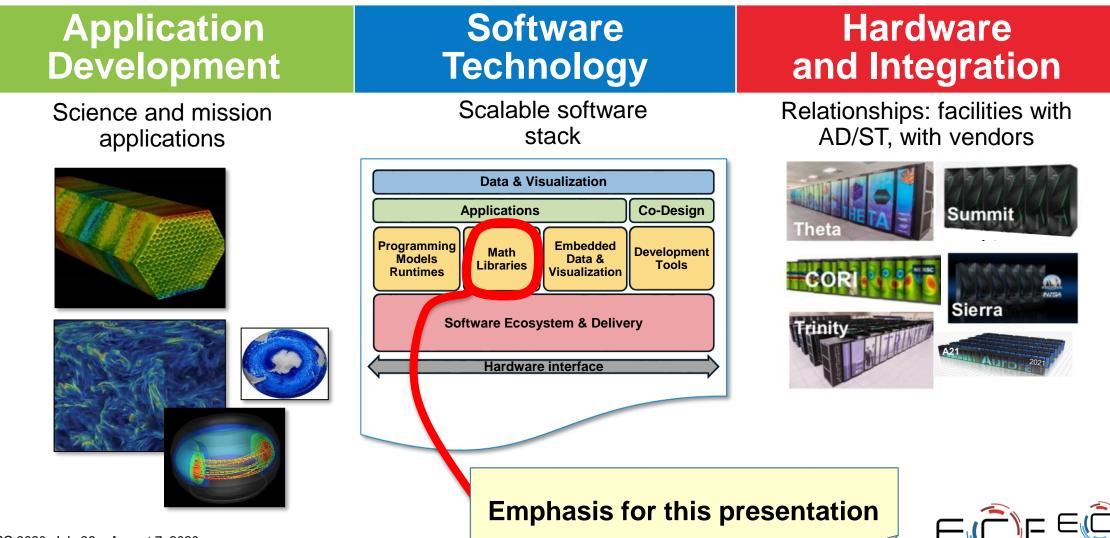
AMReX

PETSc

Ωk

Trilinos

100's of person years of experience building math software

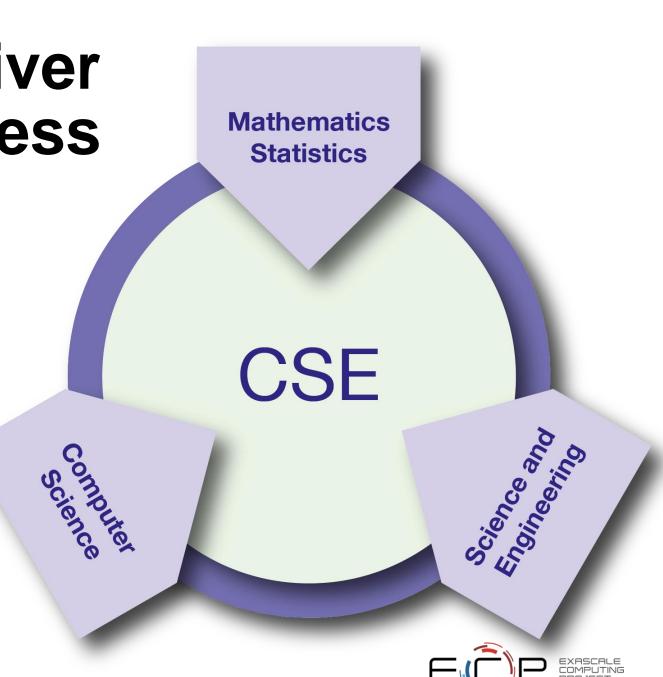

ZOLTAN

DAKOTA

dials

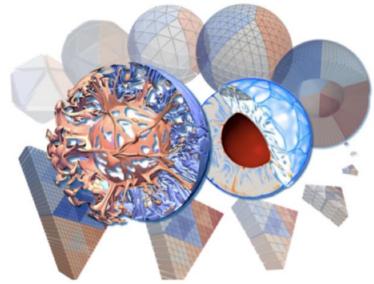
Esmond G. Ng, FASTMath Institute Director (EGNg@lbl.gov)

ECP's holistic approach uses co-design and integration to achieve exascale computing


19 ATPESC 2020, July 26 – August 7, 2020

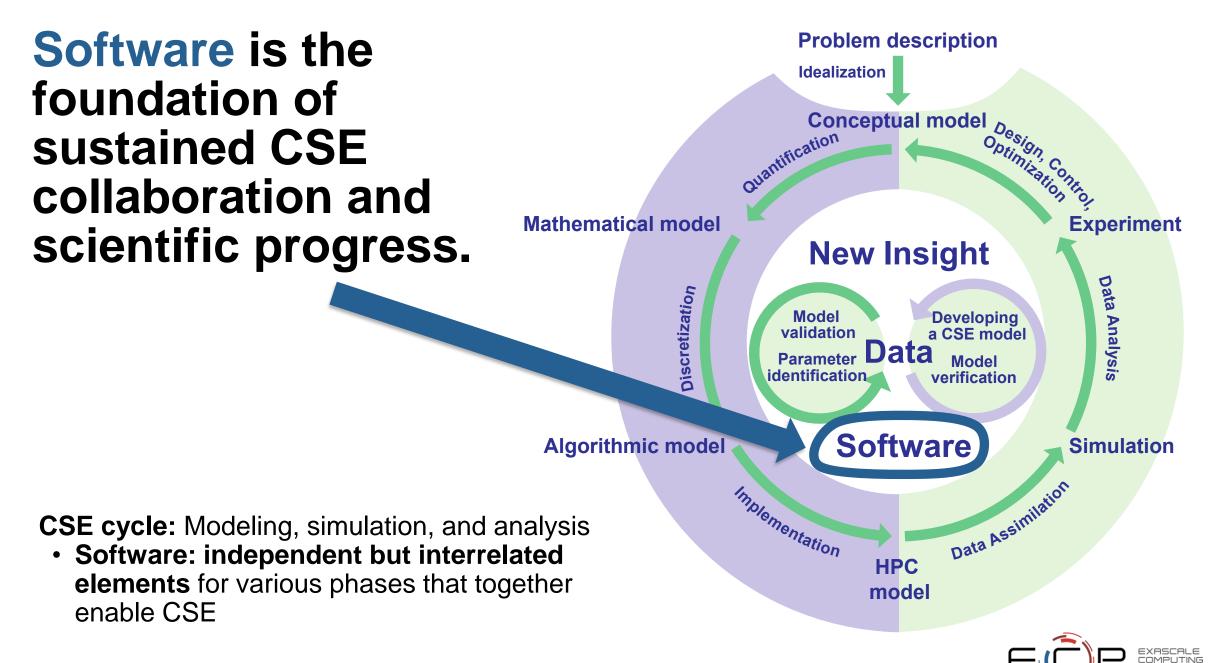
CSE: Essential driver of scientific progress

CSE = Computational Science & Engineering


Development and use of computational methods for scientific discovery

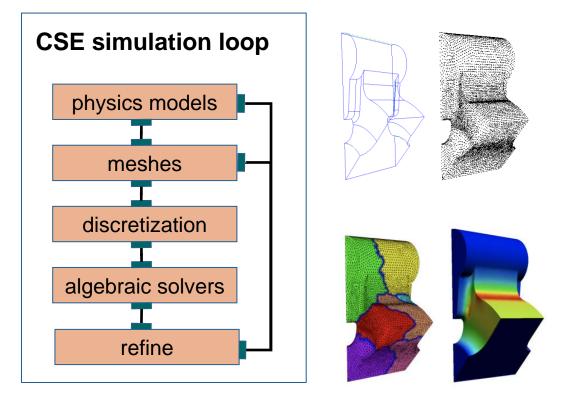
- all branches of the sciences
- engineering and technology
- support of decision-making across a spectrum of societally important applications

Rapidly expanding role of CSE: New directions toward predictive science


- Mathematical methods and algorithms
- CSE and HPC: Ubiquitous parallelism
- CSE and the data revolution
- CSE software
- CSE education & workforce development

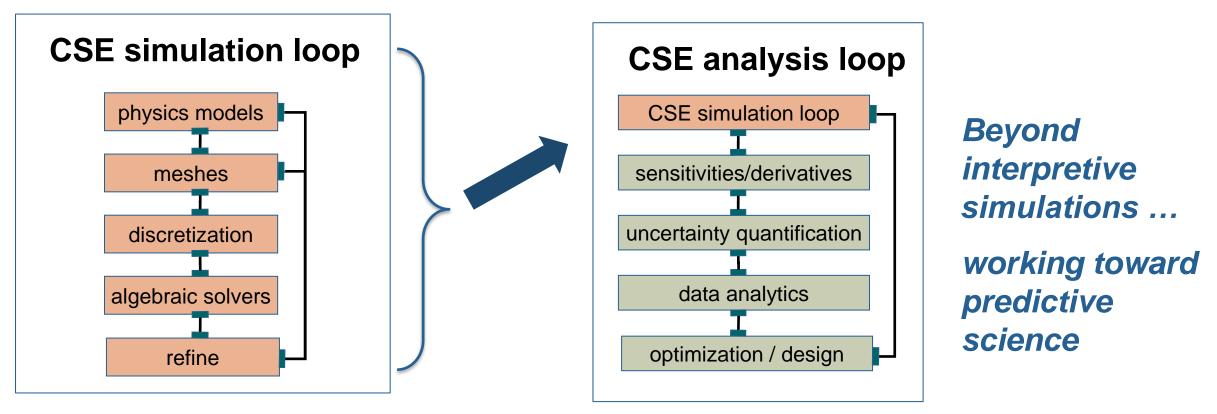
Research and Education in Computational Science & Engineering

U. Rüde, K. Willcox, L.C. McInnes, H. De Sterck, G. Biros, H. Bungartz, J. Corones, E. Cramer, J. Crowley, O. Ghattas, M. Gunzburger, M. Hanke, R. Harrison, M. Heroux, J. Hesthaven, P. Jimack, C. Johnson, K. Jordan, D. Keyes, R. Krause, V. Kumar, S. Mayer, J. Meza, K.M. Mørken, J.T. Oden, L. Petzold, P. Raghavan, S. Shontz, A. Trefethen, P. Turner, V. Voevodin, B. Wohlmuth, C.S. Woodward, *SIAM Review*, *60(3)*, Aug 2018, <u>https://doi.org/10.1137/16M1096840</u>.



22 ATPESC 2020, July 26 - August 7, 2020

CSE simulation starts with a forward simulation that captures the physical phenomenon of interest


- Develop a mathematical model of the phenomenon of interest
- Approximate the model using a discrete representation
- Solve the discrete representation
- Adapt and refine the mesh or model
- Incorporate different physics, scales

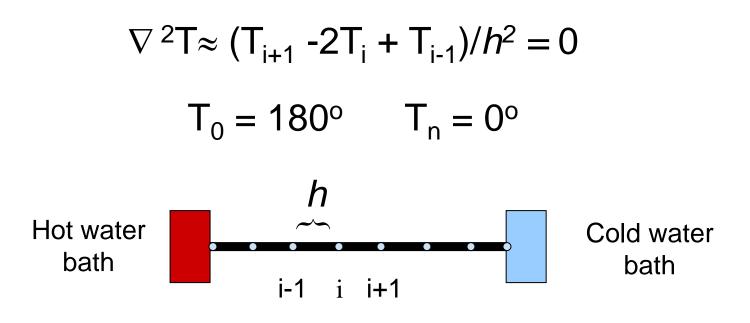
Requires: mesh generation, partitioning, load balancing, high-order discretization, time integration, linear & nonlinear solvers, eigensolvers, mesh refinement, multiscale/multiphysics coupling, etc.

CSE analysis builds on the CSE simulation loop ... and relies on even more numerical algorithms and software

Requires: adjoints, sensitivities, algorithmic differentiation, sampling, ensembles, data analytics, uncertainty quantification, optimization (derivative free & derivative based), inverse problems, etc.

First consider a very simple example

- 1D rod with one end in a hot water bath, the other in a cold water bath
- Mathematical model

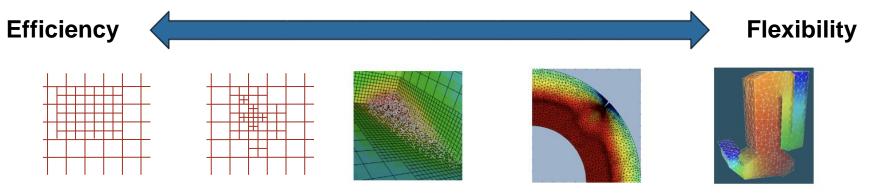

 $abla^2 T = 0 \in \Omega$ $T(0) = 180^\circ T(1) = 0^\circ$

The first step is to discretize the equations

- Approximate the derivatives of the continuous equations with a discrete representation that is easier to solve
- One approach: Finite differences

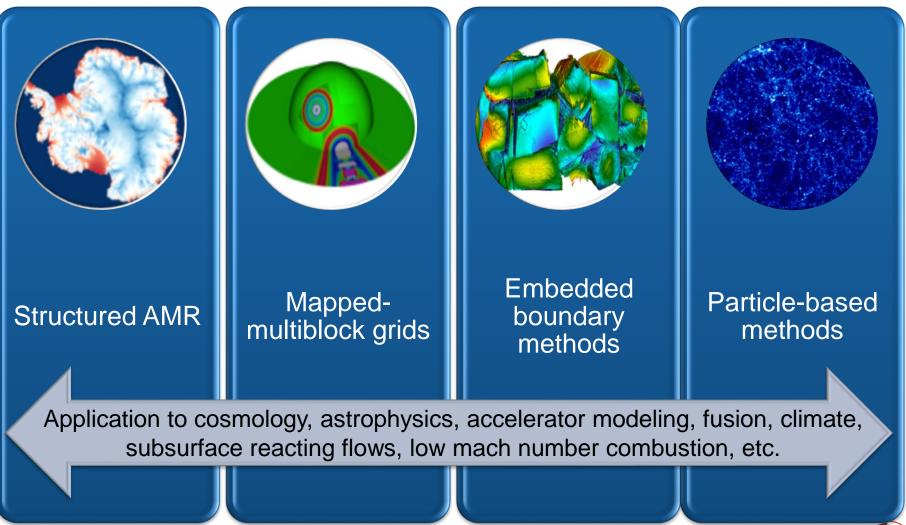
Then you can solve for the unknowns T_i

- Set up a matrix of the unknown coefficients
 - include the known boundary conditions
- Solve the linear system for T_i

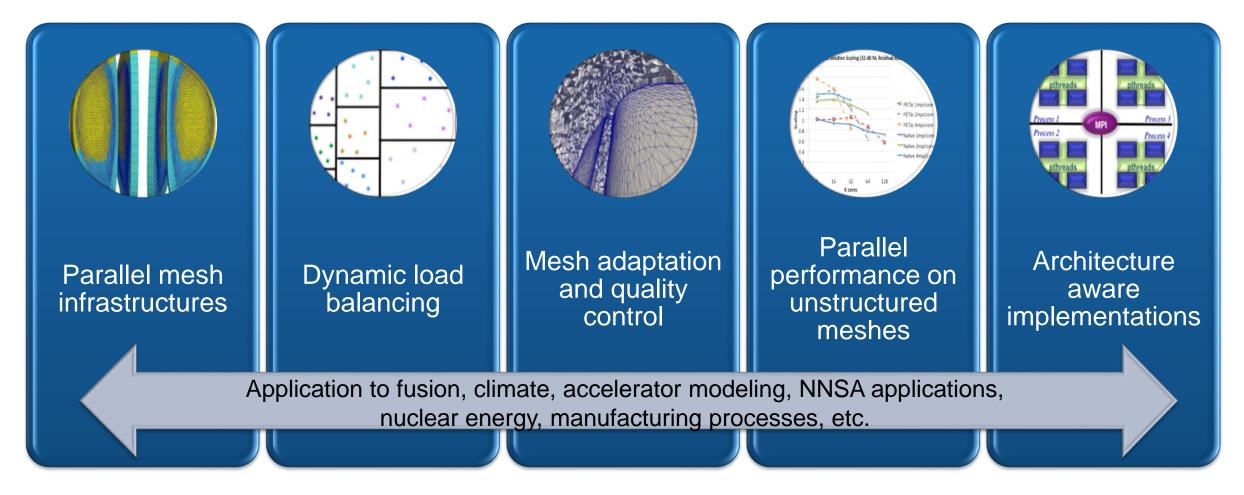

$$\begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & 0 & \dots & 0 \\ & & & & \\ 0 & \dots & & 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_3 \\ \vdots \\ T_{n-1} \end{pmatrix} = \begin{pmatrix} 180 & h^2 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

• Visualize and analyze the results

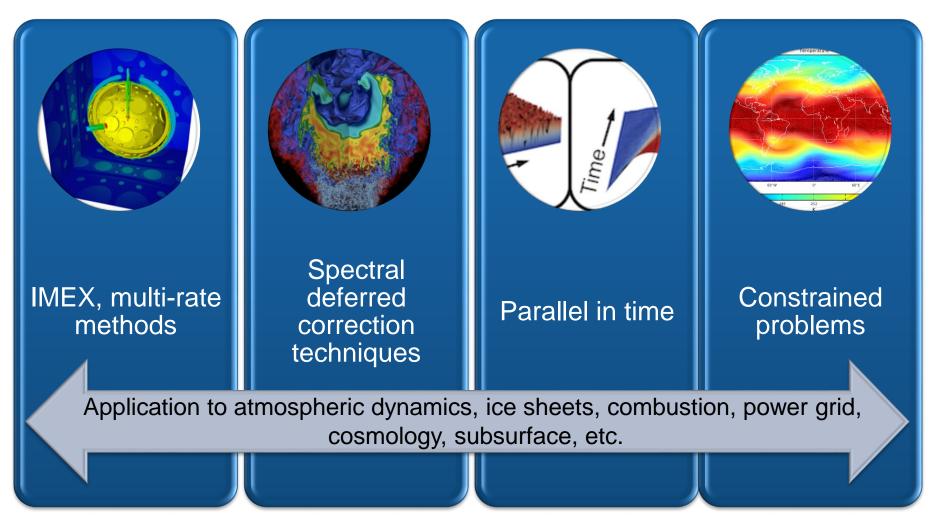
As problems get more complicated, so do the steps in the process


• Different discretization strategies exist for differing needs

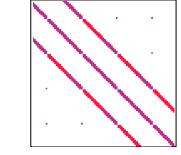
- Most problems are time dependent and nonlinear
 - Need higher algorithmic levels than linear solvers
- Increasingly combining multiple physical processes
 - Interactions require careful handling
- Goal-oriented problem solving requires optimization, uncertainty quantification

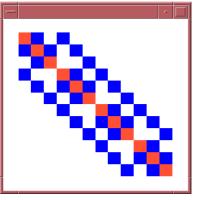


Structured grid efforts focus on high-order, mapped grids, embedded boundaries, AMR, and particles

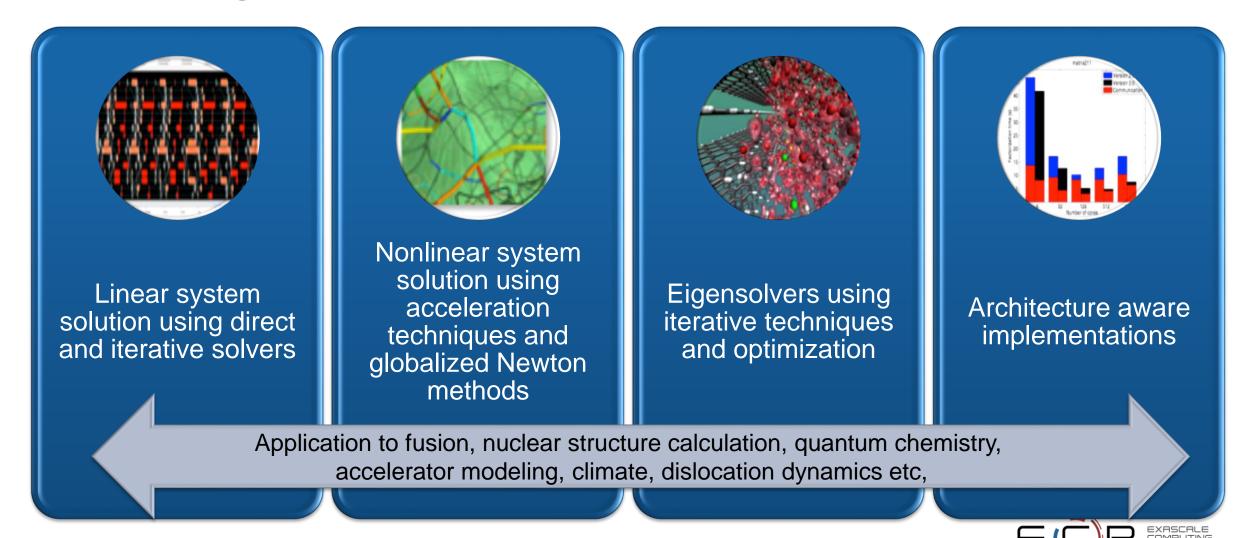


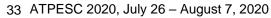
Unstructured grid capabilities focus on adaptivity, highorder, and the tools needed for extreme scaling

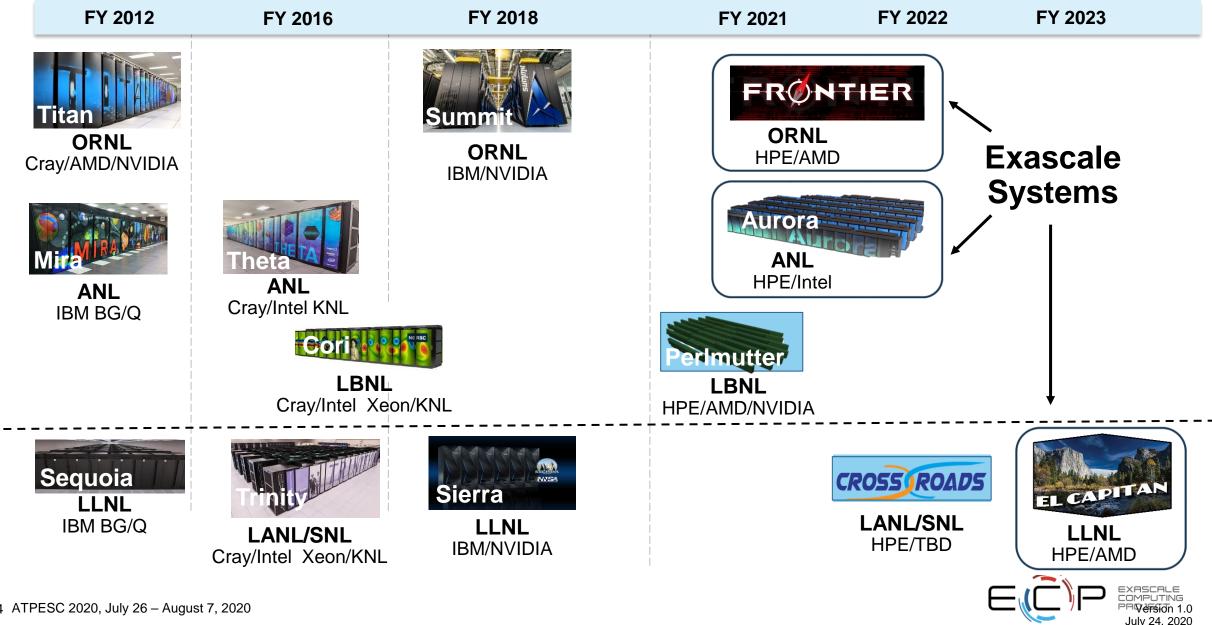

Time discretization methods provide efficient and robust techniques for stiff implicit, explicit and multi-rate systems



As problems grow in size, so do corresponding discrete systems

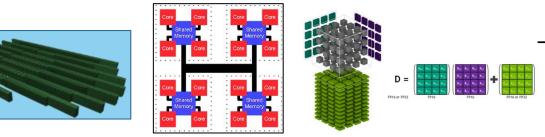

- Targeting applications with billions grid points and unknowns
- Most linear systems resulting from these techniques are LARGE and sparse
- Often most expensive solution step
- Solvers:
 - Direct methods (e.g., Gaussian Elimination)
 - Iterative methods (e.g., Krylov Methods)
 - Preconditioning is typically critical
 - Mesh quality affects convergence rate
- Many software tools deliver this functionality as <u>numerical libraries</u>
 - hypre, PETSc, SuperLU, Trilinos, etc.





Research on algebraic systems provides key solution technologies to applications

DOE HPC Roadmap to Exascale Systems


Disruptive changes in HPC architectures

Extreme levels of concurrency

- Increasingly deep memory hierarchies
- Very high node and core counts

Additional complexities

- Hybrid architectures
- GPUs, multithreading, manycore
- Relatively poor memory latency and bandwidth
- Challenges with fault resilience
- Must conserve power limit data movement
- New (not yet stabilized) programming models
- Etc.

Research advances: On-node and inter-node capabilities

- Reduce communication and synchronization
- Increase concurrency
- Address memory footprint
- Enable large communication/computation overlap
- Use GPUs and multithreading
- Compare task and data parallelism
- Low-level kernels for vector operations that support hybrid programming models
- Mixed precision (leverage compute power available in low-precision tensor cores)
- Etc.

Software libraries facilitate progress in computational science and engineering

- Software library: a high-quality, encapsulated, documented, tested, and <u>multiuse</u> software collection that provides functionality commonly needed by application developers
 - Organized for the purpose of being reused by independent (sub)programs
 - User needs to know only
 - Library interface (not internal details)
 - When and how to use library functionality appropriately

- Key advantages of software libraries
 - Contain complexity
 - Leverage library developer expertise
 - Reduce application coding effort
 - Encourage sharing of code, ease distribution of code

• References:

- <u>https://en.wikipedia.org/wiki/Library_(computing)</u>
- What are Interoperable Software Libraries? Introducing the xSDK

Broad range of HPC numerical software

Some packages with general-purpose, reusable algorithmic infrastructure in support of high-performance CSE:

waLBerla - <u>http://www.walberla.net</u>

See info about scope, performance, usage, and design, including:

- tutorials
- demos
- examples
- how to contribute

Discussed today: Gallery of highlights

... and many, many more ... Explore, use, contribute!

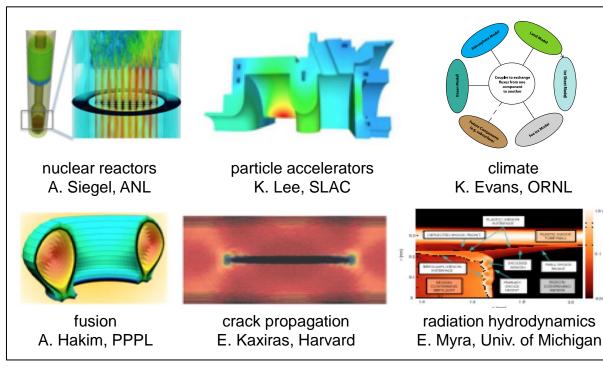
ECP applications need sustainable coordination among math libraries

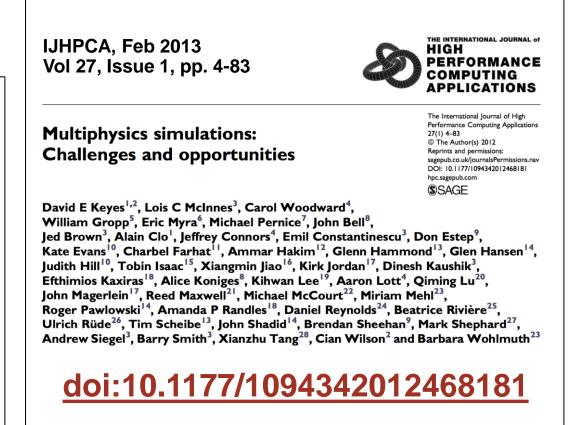
ECP AD Teams

Combustion-Pele, EXAALT, ExaAM, ExaFEL, ExaSGD, ExaSky, ExaStar, ExaWind, GAMESS, MFIX-Exa, NWChemEx, Subsurface, WarpX, WDMApp, WarpX, ExaAM, ATDM (LANL, LLNL, SNL) apps, AMReX, CEED, CODAR, CoPA, ExaLearn

Examples:

- ExaAM: DTK, hypre, PETSc, Sundials, Tasmanian, Trilinos, FFT, etc.
- ExaWind: hypre, KokkosKernels, SuperLU, Trilinos, FFT, etc.
- WDMApp: PETSc, hypre, SuperLU, STRUMPACK, FFT, etc.
- CEED: MFEM, MAGMA, hypre, PETSc, SuperLU, Sundials, etc.
- And many more ...


ECP Math Libraries



Multiphysics: A primary motivator for exascale

Multiphysics: greater than 1 component governed by its own principle(s) for evolution or equilibrium

 Also: broad class of coarsely partitioned problems possess similarities

Software libraries are not enough

Apps need to use software packages in combination

"The way you get programmer productivity is by eliminating lines of code you have to write."

- Steve Jobs, Apple World Wide Developers Conference, Closing Keynote, 1997

- Need consistency of compiler (+version, options), 3rd-party packages, etc.
- Namespace and version conflicts make simultaneous build/link of packages difficult
- Multilayer interoperability requires careful design and sustainable coordination

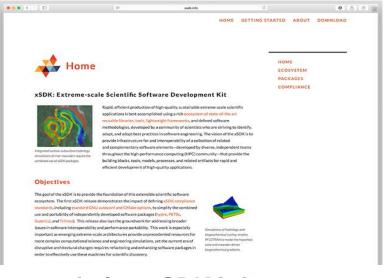
Need software ecosystem perspective

Ecosystem: A group of independent but interrelated elements comprising a unified whole

Ecosystems are challenging!

"We often think that when we have completed our study of one we know all about two, because 'two' is 'one and one.' We forget that we still have to make a study of 'and.'"

- Sir Arthur Stanley Eddington (1892–1944), British astrophysicist

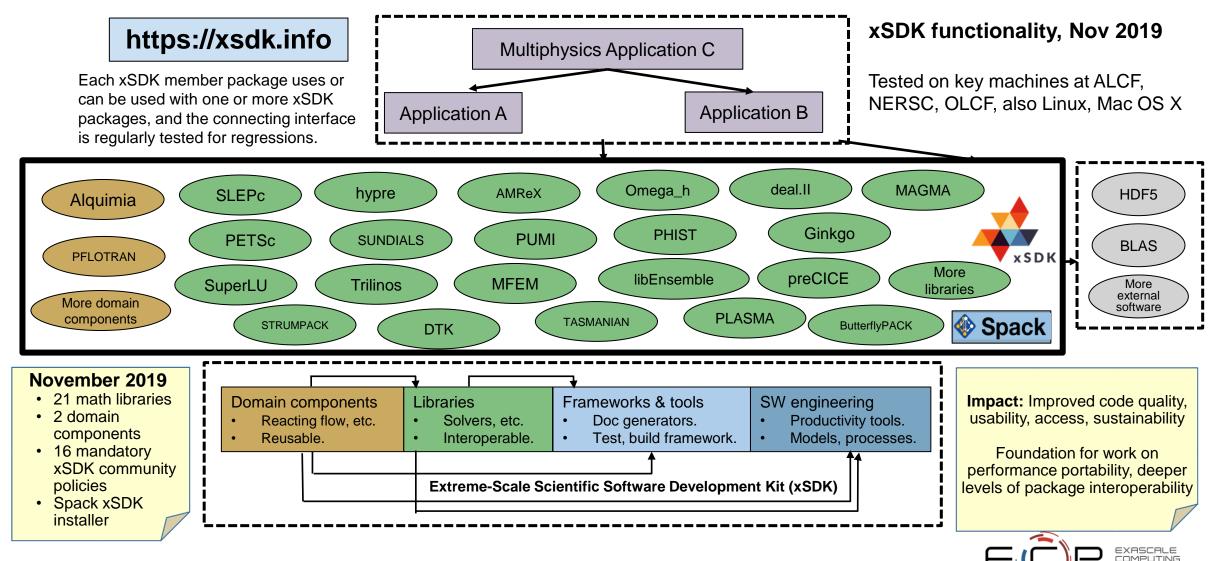


Building the foundation of a highly effective extreme-scale scientific software ecosystem

Focus: Increasing the functionality, quality, and interoperability of important scientific libraries, domain components, and development tools

Impact:

- Improved code quality, usability, access, sustainability
- Inform potential users that an xSDK member package can be easily used with other xSDK packages
- Foundation for work on performance portability ,deeper levels of package interoperability



website: xSDK.info

https://xsdk.info

xSDK collaborators

xSDK Release 0.5.0, Nov 2019

- xSDK release lead: Jim Willenbring (SNL)
- xSDK planning
 - Ulrike Meier Yang (LLNL)
- Leads for xSDK testing
 - Satish Balay (ANL): ALCF testing
 - Piotr Luszczek (UTK): OLCF testing
 - Aaron Fisher (LLNL): general testing
 - Cody Balos (LLNL): general testing
 - Keita Teranishi (SNL): general testing
- Spack liaison: Todd Gamblin (LLNL)

and many more ...

 Package compatibility with xSDK community policies and software testing:

Sandia

National

Laboratories

- AMReX: Ann Almgren, Michele Rosso (LBNL)
- DTK: Stuart Slattery, Bruno Turcksin (ORNL)

🕊 OAK

- deal.II: Wolfgang Bangerth (Colorado State University)
- Ginkgo: Hartwig Anzt (Karlsruhe Institute of Technology)
- hypre: Ulrike Meier Yang, Sarah Osborn, Rob Falgout (LLNL)
- libEnsemble: Stefan Wild, Steve Hudson (ANL)
- MAGMA and PLASMA: Piotr Luszczek (UTK)
- MFEM: Aaron Fisher, Tzanio Kolev (LLNL)
- **Omega_h**: Dan Ibanez (SNL)
- PETSc/TAO: Satish Balay, Alp Denner, Barry Smith (ANL)
- preCICE: Frederic Simonis (Technical University Munich)
- PUMI: Cameron Smith (RPI)
- SUNDIALS: Cody Balos, David Gardner, Carol Woodward (LLNL)
- SuperLU, STRUMPACK, ButterflyPACK: Sherry Li, Pieter Ghysels, Yang Liu (LBNL)
- TASMANIAN: Miroslav Stoyanov, Damien Lebrun Grandie (ORNL)
- Trilinos: Keita Teranishi, Jim Willenbring, Sam Knight (SNL)
- PHIST: Jonas Thies (DLR, German Aerospace Center)
- SLEPc: José Roman (Universitat Politècnica de València)
- Alquimia: Sergi Mollins (LBNL)
- **PFLOTRAN**: Glenn Hammond (PNNL)

xSDK community policies

xSDK compatible package: Must satisfy mandatory xSDK policies:

- M1. Support xSDK community GNU Autoconf or CMake options.
- M2. Provide a comprehensive test suite.
- M3. Employ user-provided MPI communicator.
- **M4**. Give best effort at portability to key architectures.
- M5. Provide a documented, reliable way to contact the development team.
- **M6.** Respect system resources and settings made by other previously called packages.
- M7. Come with an open source license.
- **M8.** Provide a runtime API to return the current version number of the software.
- $\ensuremath{\textbf{M9.}}$ Use a limited and well-defined symbol, macro, library, and include file name space.
- M10. Provide an accessible repository (not necessarily publicly available).
- M11. Have no hardwired print or IO statements.
- **M12.** Allow installing, building, and linking against an outside copy of external software.
- M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.
- M14. Be buildable using 64 bit pointers. 32 bit is optional.
- **M15.** All xSDK compatibility changes should be sustainable.
- **M16.** The package must support production-quality installation compatible with the xSDK install tool and xSDK metapackage.

Also **recommended policies**, which currently are encouraged but not required:

R1. Have a public repository.

R2. Possible to run test suite under valgrind in order to test for memory corruption issues.

R3. Adopt and document consistent system for error conditions/exceptions.

R4. Free all system resources it has acquired as soon as they are no longer needed.

R5. Provide a mechanism to export ordered list of library dependencies.

R6. Provide versions of dependencies.

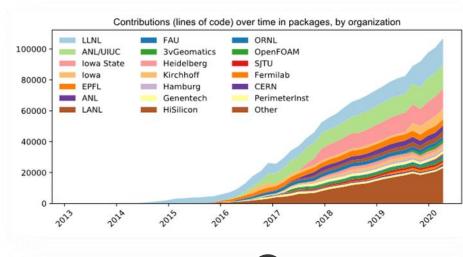
R7. Have README, SUPPORT, LICENSE, and CHANGELOG file in top directory.

<u>xSDK member package</u>: Must be an xSDK-compatible package, *and* it uses or can be used by another package in the xSDK, and the connecting interface is regularly tested for regressions.

We welcome feedback. What policies make sense for <u>your</u> software?

The xSDK is using Spack to deploy its software

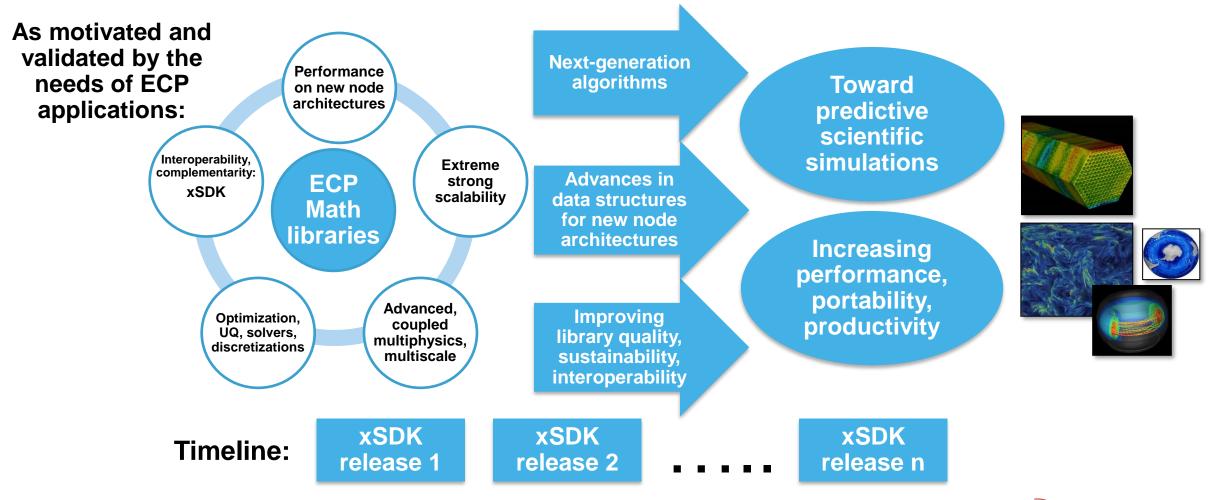
• The xSDK packages depend on a number of open source libraries


github.com/spack

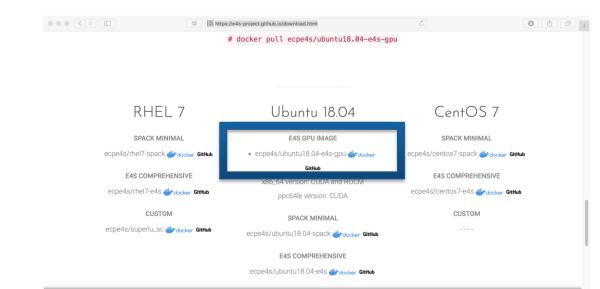
- Spack is a flexible package manager for HPC
- Spack allows the xSDK to be deployed with a single command
 - User can optionally choose compilers, build options, etc.
 - Will soon support combinatorial test dashboards for xSDK packages

Spack has grown into a thriving open source community

https://spack.io


- Over 600 contributors
- Over4,300 software packages
- Used world-wide
- Key component of ECP strategy for software deployment

xSDK: Primary delivery mechanism for ECP math libraries' continual advancements toward predictive science


Extreme-scale Scientific Software Stack (E4S) https://e4s.io

- As our software gets more complex, it is getting harder to install tools and libraries correctly in an integrated and interoperable software stack.
- E4S is a community effort to provide open source software packages for developing, deploying, and running scientific applications on HPC platforms.
 - Delivering a modular, interoperable, and deployable software stack based on Spack [spack.io].
 - E4S provides both source builds and containers of a broad collection of HPC software packages.
 - E4S exists to accelerate the development, deployment and use of HPC software, lowering the barriers.
- E4S provides containers and turn-key, from-source builds of 50+ popular HPC software packages:
 - MPI: MPICH and OpenMPI
 - Development tools: TAU, HPCToolkit, and PAPI
 - Math libraries: hypre, PETSc, SUNDIALS, SuperLU, Trilinos
 - Data and Viz tools: Adios, HDF5, and Paraview
- E4S containers support Docker, Singularity, Shifter, and Charliecloud HPC container runtimes.
- E4S Spack build cache has over 10,000 binaries.
- Platforms: x86_64, ppc64le, and aarch64. GPUs runtimes: NVIDIA (CUDA) and AMD (ROCm).
- E4S DocPortal provide a single online location for *accurate* product descriptions for software products.
- E4S helps applications reduce the burden to install dependencies:
 - WDMapp installation speeds up from hours to minutes on Rhea at OLCF [https://wdmapp.readthedocs.io/en/latest/machines/rhea.html]

Download E4S v1.1 GPU image

[/]spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/adios-1.13.1-debxolyd5skx27s6ngtacb7enrcsfq64 2: aml /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/aml-0.1.0-xdrekw6u7gr556xd6amyxcerhg5v4wcs ropt spactry time-autoritals, where, brigger-7, al yani-6, 1, 0-hardreneus/grossowanykerngsvenes /spack/opt/spack/time-autoritals/0-has6, brigger-7, 30 /anghots-1, 0-try-hym33/hit2hait06/mctarqtletxejs /spack/opt/spack/time-ubuntul8, 00+x86, brigger-7, 3, 0/bolt-1, 0rc2-danzbi8/hithussgamigpan4434prd-zpa /spack/opt/spack/time-ubuntu8, 00+x86, brigger-7, 3, 0/coliper-2, 0, 1-hzze6us/f5e2ekizebsyzatjuxo3sgwkr tes /spack/opt/spack/time-ubuntu8, 00+x86, brigger-7, 3, 0/anshan-numtime-3, 1-msc2thintgfiupsp2dygstbhm55o6vse 3: argobots 4: bolt 6: darshan-runtime /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/dyninst-10.1.0-fttay2zoqsbpcqil6ur5cevssashho2c /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/faodel-1.1906.1-ky5inwwreweac2bsml7w7x2szskkhz2 7: dyninst 8: foodel 9: flecsi /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/flecsi-develop-fxq6sbr5oryertnaf4brpzs2ejshevbt /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/gasnet-2019.3.0-47idkg4gcemcvtejschfcjka6cz7164n 10: gasnet 11: geopm / 12: globalarrays /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/geopm-1.0.0-rc2-chxnuparg2hhaw4yworkqfhp36n7kxgk s /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/globalarrays-5.7-bl4hhz32b2yw64wjtoan3fafjkkj7nqk 13: gotcha /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/gotcha-1.0.2-gggazxidw2wbolux7q7n2m53nxccu3i2 /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/hdf5-1.10.5-qdkkei6imkjoma5nd4jwbm6xphlkm4yp 14: hdf5 15: hpctoolkit /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/hpctoolkit-2019.08.14-2iwddpemc4q64pvxmd6ys5oicmyr3lyr 16: hypre /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/hppre-2.18.1-3sh6dcavpdxwd4ddykp4zer7fmqhay54 17. kokkos /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/kokkos-2.9.00-jp35xv6moqehjrynzoenj2kzpxski6cz /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/legion-19.06.0-yf6lxznv47faxs2jf3et174roskksvu 18: legion 19. libnem /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/libnrm-0.1.0-e7eixtdo6bz7o4dervwvpo3sb2jqfxud /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/libquo-1.3-l67575wypddpd5tigchg2iu4kkacmj3r 20: libauo 21: magma /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/magma-2.5.1-mtqtn6ad3qtfwwf5fvdc2igzccu43yhk /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/mercury-1.0.1-nena7d7vhigm56abtr44jospgoymau4 22: mercury 23: mfem /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/mfem-4.0.0-ef2xjvix7qkbd6tmcith3yailtwjviul /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/mpich-3.2.1-yi7oupSretdgtafg3hyhrixwdjdnaxtg 24: mpich 25: moifileutils /spack/opt/spack/linux-ubuntu18.04-x86.64/acc-7.3.0/mpifileutils-develop-41o3vspw6662oc2o6oi7iv77kdnb6vtt /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/ninja-1.9.0-rtsvo2vqkm5dscr3sbszigdsqybm5f6c : ninja 27: openmpi /spack/opt/spack/linux-ubuntu18.04-x86.64/acc-7.3.0/openmpi-3.1.4-suwdembrynis6zi7rob4577aak2wnpp /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/papi-5.7.0-bdebmghmSlypixzv3avfmy2ldvgsemb /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/papi-5.7.0-bdebmghmSlypixzv3avfmy2ldvgsemb /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/papi-0.5.1.0-bdebmghmSlypixzv3avfmy2ldvgsemb 28: papi 29: papyrus /spice/opt/spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/pdf3.0/pdf31e1-netdf1.11.2-lmkvc7xsmgab2a6v4mgaso5whlxtg4 /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/pdf3.25.1-gn7v7q63nj4dxruluce?m2bqk4xatel2 parallel-netcdf 31: pdt /spack/opt/spack/linux-ubuntul8.04-x86_64gcc-7.3.0/pets-c-3.12_liu/gizeh/g2b2t7s5xuictuhn7xx5rxi notebook /spack/opt/spack/linux-ubuntu18.04-x86_64gcc-7.3.0/pets-c-3.12_liu/gizeh/g2b2t7s5xuictuhn7xx5rxi : petsc 33: pv-jupyter-notebook ble /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/py-libensetble-0.5.2-esfakggd3gzphtocgoiwbgygxig5kbhy /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/pthreads-1.14-wdbuioiajj4j6pmw656nfy7qm3n7le6e 34: py-libensemble 35: athreads 36: raja /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/raja-0.8.0-fojlfngsdkl35id5ennuioxy52y36sdp /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/rempi-1.1.0-lpcvnsu5oo77uubhqrcbjrs3c5clfo3x 37: rempi /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/scr-1.2.2-u3wzsilfsyh3qapnxpiqxs22iqxxfuis /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/strumpack-3.1.1-qrutcou5g3mf2efluktbmybcjdxu2crv 38- scr 39: strumpack /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/sundia1s-5.0.0-4sx2ndxfzgnexxkn72mgrsu6ouoetf33
st /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/superlu-dist-6.1.1-sp4dikmr61hmm5vlemwhx6snsudx1m62 40: sundials 41: superlu-dist 42: sz /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/sz-2.0.2.0-tvqs6j3rlfpl66kdwf5in3ofqdylqsmw 43: tasmanian /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/tasmanian-7.0-ls2iqflhjstlrx5jqyfy5gvj6qbz7k7d /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/tau-2.29-2eoqqqfon3bjop6qd7tinrjd3wydc6jj /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/trilinos-12.14.1-zurt5mzx456bhtb2pc3w3na5atbqm6u: 44: tou 45: trilinos 46: umpire /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/umpire-0.3.3-om5obb6t6lu7xbksrcfhhitzzt62mzgl /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/unifyfs-develop-hlev5zptypluz37rkkeagmxwifdkplr 47: unifyfs /spack/opt/spack/linux-ubuntu18.04-x86.64/acc-7.3.0/upcxx-2019.9.0-54rvinkhwwecrhmsmaweev5ku5zvsdf7 48: upcxx /spack/opt/spack/linux-ubuntul8.04-x86_64/gcc-7.3.0/veloc-1.1-j2x7hcglj6grgi3x5kgcd6lomdvace3q /spack/opt/spack/linux-ubuntu18.04-x86_64/gcc-7.3.0/veloc-1.1-j2x7hcglj6grgi3x5kgcd6lomdvace3q

E e4s	Pipeline Jobs 121				
Project overview	Stage-0	Stage-1	Stage-2	Stage-3	Stage-4
Repository	(specs) libbsd/j O	(specs) darsha O	(specs) bzip2/w	C (specs) gdbm/6C	(specs) hwloc/5O
Issues 0	(specs) libffi/w5 C	(specs) diffutils/_C	(specs) libtool/b	C (specs) gettext/ C	(specs) perl/gu C
Merge Requests	(specs) libiconv C	(specs) expat/c C	(specs) readlin	C (specs) libpciac C	
🤗 CI/CD			(opena) contained (
Pipelines	(specs) libsigse O	(specs) libxml2/O		(specs) sqlite/xtO	
Jobs	(specs) libsodiu C	(specs) libzma/ O			
Schedules	(specs) openbl C	(specs) m4/kvb C			
Operations					
Analytics	(specs) papi/dj O	(specs) nourses_O			
8 Members	(specs) pdt/zqqC	(specs) tar/hhrx			
🗘 Settings	(specs) pkgcon C				
	(specs) util-ma C				
	(specs) xz/ppyf C				
≪ Collapse sidebar	(specs) zlib/axs C				

E4S build pipelineCori, NERSC

- 50 ECP ST
 products
- CUDA
- ROCm
- Tensorflow
- PyTorch

https://e4s.io

https://spack.io

E4S Summary

What E4S is not

A closed system taking contributions only from DOE software development teams.

What E4S is

Extensible, open architecture software ecosystem accepting contributions from US and international teams. Framework for collaborative open-source product integration.

A monolithic, take-it-or-leave-it software behemoth.

A full collection if compatible software capabilities **and** A manifest of a la carte selectable software capabilities.

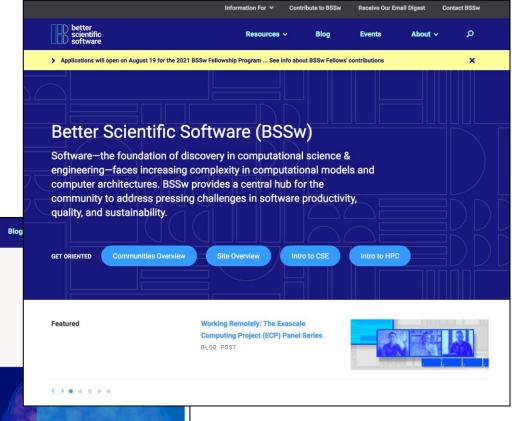
A commercial product.

Vehicle for delivering high-quality reusable software products in collaboration with others.

A simple packaging of existing software.

The conduit for future leading edge HPC software targeting scalable next-generation computing platforms. A hierarchical software framework to enhance (via SDKs) software interoperability and quality expectations.

Further reading


- <u>Building community through software policies</u>, Piotr Luszczek and Ulrike Yang
- SuperLU: How advances in software practices are increasing sustainability and collaboration, Sherry Li
- Porting the Ginkgo package to AMD's HIP ecosystem, Hartwig Anzt
- <u>Scientific software packages and their communities</u>, Rene Gassmoeller
- <u>Leading a scientific software project:</u> <u>It's all personal</u>, Wolfgang Bangerth
- <u>The art of writing scientific software in</u> <u>an academic environment</u>, Hartwig Anzt
- Working Remotely: The Exascale Computing Project (ECP) panel series, Elaine Raybourn et al.
- <u>Better Scientific Software: 2019</u> <u>highlights</u>, Rinku Gupta
- And many more ...

2019

https://bssw.io

See also Track 7: Software Productivity & Sustainability (Aug 6)

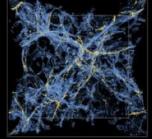
Gallery of highlights

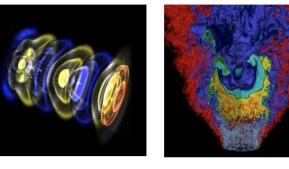
- Overview of some HPC numerical software packages
- 1 slide per package, emphasizing key capabilities, highlights, and where to go for more info
 - Listed first
 - Packages featured in ATPESC 2020 lectures and hands-on lessons
 - Developers are available for optional discussions
 - Listed next
 - Additional highlighted packages (not a comprehensive list)

AMReX

Block-structured adaptive mesh refinement framework. Support for hierarchical mesh and particle data with embedded boundary capability.

Capabilities

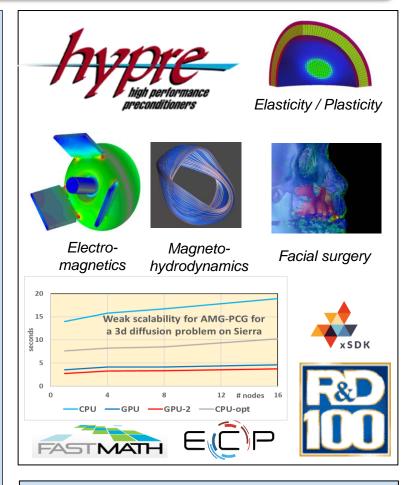

- Support for solution of PDEs on hierarchical adaptive mesh with particles and embedded boundary representation of complex geometry
- Support for multiple modes of time integration
- Support for explicit and implicit single-level and multilevel mesh operations, multilevel synchronization, particle, particle-mesh and particle-particle operations
- Hierarchical parallelism -
 - hybrid MPI + OpenMP with logical tiling on multicore architectures
 - hybrid MPI + GPU support for hybrid CPU/GPU systems (CUDA and beyond)
- Native multilevel geometric multigrid solvers for cell-centered and nodal data
- Highly efficient parallel I/O for checkpoint/restart and for visualization native format supported by Visit, Paraview, yt
- Tutorial examples available in repository


Open source software

- Used for divers apps, including accelerator modeling, adaptive manufacturing, astrophysics, combustion, cosmology, multiphase flow, phase field modeling, ...
- Freely available on github with extensive documentation

Examples of AMReX applications

https://www.github.com/AMReX-Codes/amrex


hypre

Lawrence Livermore National Laboratory

Highly scalable multilevel solvers and preconditioners. Unique user-friendly interfaces. Flexible software design. Used in a variety of applications. Freely available.

Conceptual interfaces

- Structured, semi-structured, finite elements, linear algebraic interfaces
- Provide natural "views" of the linear system
- Provide for more efficient (scalable) linear solvers through more effective data storage schemes and more efficient computational kernels
- Scalable preconditioners and solvers
 - Structured and unstructured algebraic multigrid solvers
 - Maxwell solvers, H-div solvers
 - Multigrid solvers for nonsymmetric systems: pAIR, MGR
 - Matrix-free Krylov solvers
- Open source software
 - Used worldwide in a vast range of applications
 - Can be used through PETSc and Trilinos
 - Provide CPU and GPU support
 - Available on github: <u>https://www.github.com/LLNL/hypre</u>

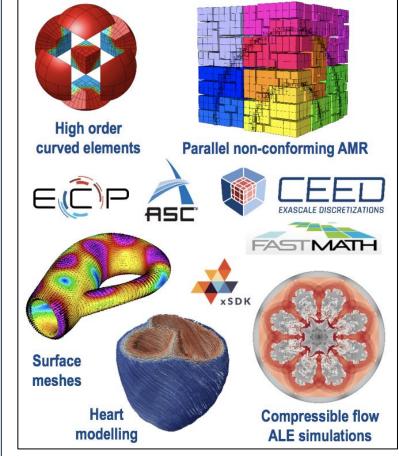
http://www.llnl.gov/CASC/hypre

MFEM

Lawrence Livermore National Laboratory

Free, lightweight, scalable C++ library for finite element methods. Supports arbitrary high order discretizations and meshes for wide variety of applications.

Flexible discretizations on unstructured grids

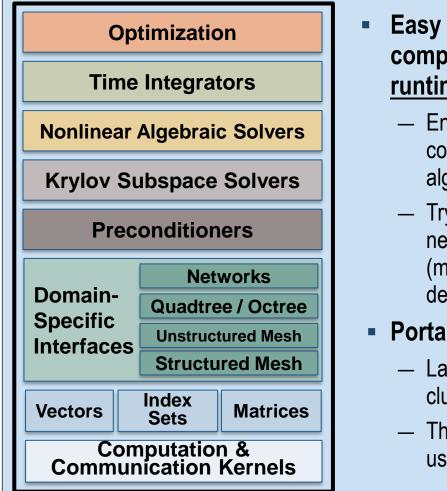

- Triangular, quadrilateral, tetrahedral and hexahedral meshes.
- Local conforming and non-conforming refinement.
- Bilinear/linear forms for variety of methods: Galerkin, DG, DPG, ...

High-order and scalable

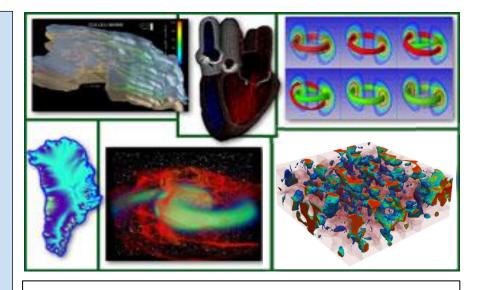
- Arbitrary-order H1, H(curl), H(div)- and L2 elements. Arbitrary order curvilinear meshes.
- MPI scalable to millions of cores and includes initial GPU implementation. Enables application development on wide variety of platforms: from laptops to exascale machines.

Built-in solvers and visualization

- Integrated with: HYPRE, SUNDIALS, PETSc, SUPERLU, …
- Accurate and flexible visualization with VisIt and GLVis
- Open source software
 - LGPL-2.1 with thousands of downloads/year worldwide.
 - Available on GitHub, also via OpenHPC, Spack. Part of ECP's CEED co-design center.



http://mfem.org



Portable, Extensible Toolkit for Scientific Computation / Toolkit for Advanced Optimization **Scalable algebraic solvers for PDEs**. Encapsulate parallelism in high-level objects. Active & supported user community. Full API from Fortran, C/C++, Python.

- Easy customization and composability of solvers <u>at</u> <u>runtime</u>
 - Enables optimality via flexible combinations of physics, algorithmics, architectures
 - Try new algorithms by composing new/existing algorithms (multilevel, domain decomposition, splitting, etc.)
- Portability & performance
 - Largest DOE machines, also clusters, laptops
 - Thousands of users worldwide

PETSc provides the backbone of diverse scientific applications.

clockwise from upper left: hydrology, cardiology, fusion, multiphase steel,

relativistic matter, ice sheet modeling

https://www.mcs.anl.gov/petsc

Parallel Unstructured Mesh Infrastructure

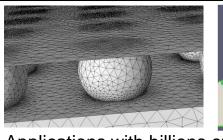
Parallel management and adaptation of unstructured meshes. Interoperable components to support the development of unstructured mesh simulation workflows

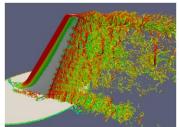
Core functionality

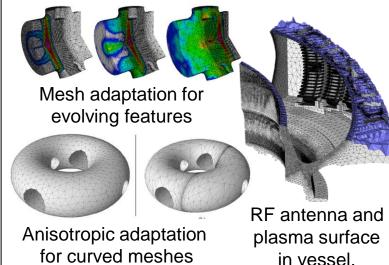
- Distributed, conformant mesh with entity migration, remote read only copies, fields and their operations
- Link to the geometry and attributes
- Mesh adaptation (straight and curved), mesh motion
- Multi-criteria partition improvement
- Distributed mesh support for Particle In Cell methods

Designed for integration into existing codes

- Conformant with XSDK
- Permissive license enables integration with open and closed-source codes


In-memory integrations developed


- MFEM: High order FE framework
- PetraM: Adaptive RF fusion
- PHASTA: FE for turbulent flows
- FUN3D: FV CFD
- Proteus: Multiphase FE
- ACE3P: High order FE for EM
- M3D-C1: FE based MHD
- Nektar++: High order FE for flow
- Albany/Trilinos: Multi-physics FE



Rensselaer

Applications with billions of elements: flip-chip (L), flow control (R)

Source Code: github.com/SCOREC/core Paper: www.scorec.rpi.edu/REPORTS/2014-9.pdf

PUMIPIC Parallel Unstructured

Mesh Infrastructure for Particle-in-Cell

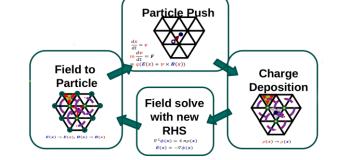
Parallel management of unstructured meshes with particles. Framework for GPU accelerated particle-in-cell applications using unstructured meshes.

Core functionality

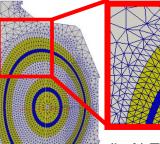
- Unstructured mesh-based approach Particles accessed through mesh
- Particle search through mesh adjacencies Effective coupling to PDE solvers Partitioning using bounding flux surfaces,
- graph, or geometric methods
- PICpart: owned elements (defined by partition) + copied elements from topologically or spatially neighboring processes
- Stored on GPU using Omega_h library: github.com/SNLComputation/omega_h
- Particles
 - Supports multiple species each with distinct combinations of 'Plain Old Data' per particle
 - Group particles by the mesh element that they are spatially located within
 - Stored on GPU using Sell-C-Sigma structure [Kreutzer 2014] that provides coalesced accesses for 'warp' sized blocks of work
- Parallel kernel launch function abstracts underlying particle and mesh storage

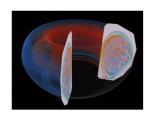
Applications Supported

- GITRm: impurity transport
- XGCm: core+edge fusion plasma physics
- Weak scaling on up to 24,000 GPUs of Summit with 1.15 trillion particles running push, particle-tomesh, and mesh-to-particle operations with an XGCm tokamak mesh and domain decomposition


BPS

Plasma Simulation


High-fidelity


Boundary

Rensselaer

Stages of a PIC application supported by PUMIPic

(Left) Two PICparts defined as sets of flux faces in XGCm mesh. (Center) The blue face is the 'core' and the yellow faces are its 'buffers'. (Right) Two poloidal planes in a toroidal domain.

Source Code: github.com/SCOREC/pumi-pic Paper: www.scorec.rpi.edu/REPORTS/2019-2.pdf

PUMIPic Applications

Unstructured mesh particle-in-cell fusion applications using **PUMIPic.** Supporting the analysis of tokamak plasma physics and impurity transport using extensions to the PUMIPic framework.

scaling on

Summit

D3D, 2M elm. mesh,

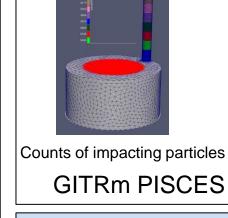
192 PICParts/plane 1 to 128 planes,

48M ptcls/GPU.

6 GPUs/node

XGCm

- Core and edge fusion plasma physics with ions and kinetic electrons
- Tokamak: 2D mesh partitioned into PICParts (see PUMIPic slide) based on bounding flux surfaces
- A group of processes is assigned to a PICPart and 1/Pth of the torus in the toroidal direction – group size controls particle load on each GPU
- Initial focus on performance and scaling with pseudo operations
- Weak scaling on up to 24,000 GPUs of Summit with 1.15 trillion particles running push, particle-to-mesh, and mesh-to-particle operations
- Current focus on implementing physically correct operations


GITRm

- Impurity transport
- 3D meshes PICParts formed using graph based partitions
- Tracking wall collisions and multiple species
- Initial focus on verifying implementation of all physics model terms
- Statistical and numerical verification complete
- Current focus on performance and scalability

Rensselaer

XGCm weak Time per operation, 48.0 mppg _ග 15 ¹000 ¹⁵⁰⁰ ²⁵⁰⁰ ³⁰⁰⁰ Rm-Lorentz and Collisional F Particle paths match **GITRm PISCES** initial test case Contact: Mark S. Shephard

shephard@rpi.edu

SUNDIALS

Suite of Nonlinear and Differential /Algebraic Equation Solvers

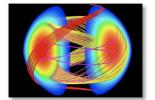
Adaptive time integrators for ODEs and DAEs and efficient nonlinear solvers Used in a variety of applications. Freely available. Encapsulated solvers & parallelism.

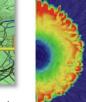
• ODE integrators:

- CVODE: adaptive order and step BDF (stiff) & Adams (non-stiff) methods

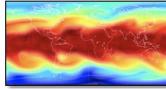
dials

- ARKode: adaptive step implicit, explicit, IMEX, and multirate Runge-Kutta methods
- **DAE integrators**: IDA adaptive order and step BDF integrators
- Sensitivity Analysis: CVODES and IDAS provide forward and adjoint sensitivity analysis capabilities for ODEs and DAEs respectively
- Nonlinear Solvers: KINSOL Newton-Krylov, Picard, and accelerated fixed point
- Modular Design: Users can supply own data structures and solvers or use SUNDIALS provided modules
 - Written in C with interfaces to Fortran

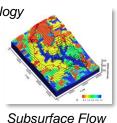

Lawrence Livermore


National Laboratory

- Vectors modules: serial, MPI, OpenMP, CUDA, RAJA, hypre, PETSc, & Trilinos
- Open Source: Freely available (BSD License) from LLNL site, GitHub, and Spack. Can be used from MFEM, PETSc, and deal.II


FASTMATH

Magnetic Reconnection Dislocation Dynamics



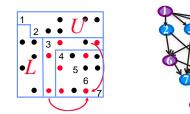
Atmospheric Dynamics

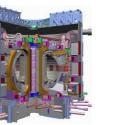
Cosmology

SUNDIALS is supported by extensive documentation, a user email list, and an active user community

http://www.llnl.gov/casc/sundials

SuperLU


Supernodal Sparse LU Direct Solver. Unique user-friendly interfaces. Flexible software design. Used in a variety of applications. Freely available.


Capabilities

- Serial (thread-safe), shared-memory (SuperLU_MT, OpenMP or Pthreads), distributedmemory (SuperLU_DIST, hybrid MPI+ OpenM + CUDA).
 - Implemented in C, with Fortran interface
- Sparse LU decomposition, triangular solution with multiple right-hand sides
- Incomplete LU (ILU) preconditioner in serial SuperLU
- Sparsity-preserving ordering:
 - Minimum degree ordering applied to A^TA or A^T+A
 - Nested dissection ordering applied to A^TA or A^T+A [(Par)METIS, (PT)-Scotch]
- User-controllable pivoting: partial pivoting, threshold pivoting, static pivoting
- Condition number estimation, iterative refinement.
- Componentwise error bounds

Performance

- Factorization strong scales to 24,000 cores (IPDPS'18)
- Triangular solve strong scales to 4000 cores (CSC'18)
- Open source software
 - Used worldwide in a vast range of applications, can be used through PETSc and Trilinos, available on github

ITER tokamak

quantum mechanics

Widely used in commercial software, including AMD (circuit simulation), Boeing (aircraft design), Chevron, ExxonMobile (geology), Cray's LibSci, FEMLAB, HP's MathLib, IMSL, NAG, SciPy, OptimaNumerics, Walt Disney Animation.

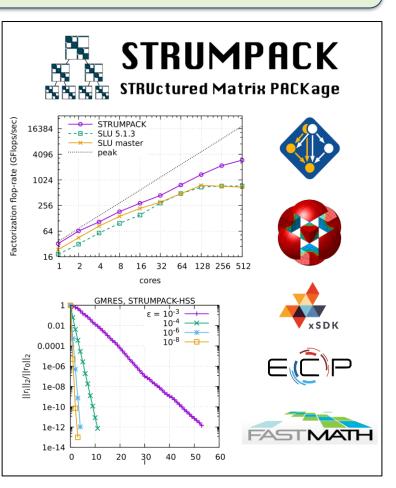
http://crd-legacy.lbl.gov/~xiaoye/SuperLU

STRUctured Matrix PACKage. Hierarchical solvers for dense rank-structured matrices; fast sparse solver and robust and scalable preconditioners.

Dense Matrix Solvers, Hierarchical Approximations

- Hierarchical partitioning, low-rank approximations
- Formats: Hierarchically Semi-Separable (HSS), Hierarchically Off-Diagonal Block Low-Rank (HODLR), Block Low-Rank (BLR)
- Applicable to integral equations discretized with boundary element methods, structured matrices such as Cauchy
- or Toeplitz, kernel matrices, covariance matrices, ...
- Algorithms with much lower asymptotic complexity than corresponding ScaLAPACK routines

Sparse Direct Solver


- Multifrontal algorithm, Fill-reducing orderings: Par-METIS, PT-Scotch, RCM, spectral
- Good scalability, fully distributed, parallel symbolic phase

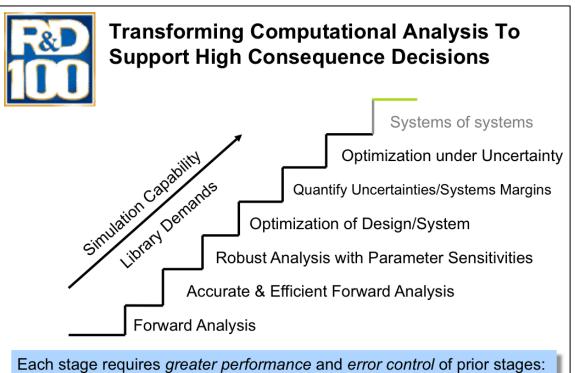
Sparse Preconditioners

- Sparse direct solver with dense hierarchical (low-rank) approximations
- Scalable and robust, aimed at PDE discretizations, indefinite systems, …
- Iterative solvers: GMRES, BiCGStab, iterative refinement

Software

- BSD License, MPI+OpenMP, scalable to 10K+ cores
- Interfaces from PETSc, MFEM (Trilinos coming), available in Spack
- Under very active development

github.com/pghysels/STRUMPACK


Trilinos

Optimal kernels to optimal solutions. Over 60 packages. Laptops to leadership systems. Next-gen systems, multiscale/multiphysics, large-scale graph analysis.

- Optimal kernels to optimal solutions
 - Scalable linear, nonlinear, eigen, transient, optimization, UQ solvers
 - Discretization, geometry, meshing
 - Load balancing
 - Performance Portability across multiple platforms (GPU, multicore) provided by Kokkos
- 60+ packages
 - Other distributions: Cray LIBSCI, Github repo
 - Thousands of users, worldwide distribution
 - Laptops to leadership systems: MPI, GPU, multicore

Each stage requires *greater performance* and *error control* of prior stages: Always will need: more accurate and scalable methods. more sophisticated tools.

https://trilinos.github.io/

Trilinos/Belos

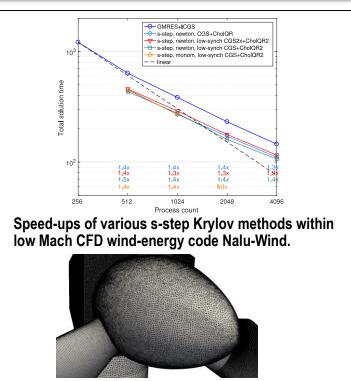
Iterative Krylov-based solvers. Templated C++ allows for generic scalar, ordinal, and compute node types.

Ability to solve single or sequence of linear systems

- Simultaneously solved systems w/ multiple-RHS: AX = B
- Sequentially solved systems w/ multiple-RHS: $AX_i = B_i$, i=1,...,t
- Sequences of multiple-RHS systems: $A_i X_i = B_i$, i=1,...,t

Standard methods

- Conjugate Gradients (CG), GMRES
- TFQMR, BiCGStab, MINRES, fixed-point


Advanced methods

- Block GMRES, block CG/BICG
- Hybrid GMRES, CGRODR (block recycling GMRES)
- TSQR (tall skinny QR), LSQR
- Pipelined and s-step methods
- Stable polynomial preconditioning

Performance portability via Kokkos (CPUs, NVIDIA/Intel/AMD GPUs, Phi)

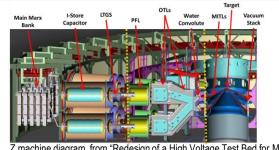
- Ongoing research
 - Communication avoiding methods

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Thomas et al., "High-fidelity simulation of wind- turbine incompressible flows", SISC, 2019.

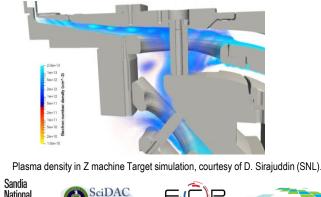
https://trilinos.github.io/belos.html

Trilinos/MueLu


Structured and unstructured aggregation-based algebraic multigrid (AMG) preconditioners

- Robust, scalable, portable AMG preconditioning critical for many large-scale simulations
 - Multifluid plasma simulations
 - Shock physics
 - Magneto-hydrodynamics (MHD)
 - Low Mach computational fluid dynamics (CFD)

Capabilities


- Aggregation-based coarsening
- Smoothers: Jacobi, GS, /1 GS, polynomial, ILU, sparse direct
- Load-balancing for good parallel performance
- Structured coarsening, geometric multigrid
- Setup and solve phases can run on GPUs.
- Performance portability via Kokkos (CPUs, NVIDIA/Intel/AMD GPUs, Xeon Phi)
- Research Areas
 - AMG for multiphysics
 - Multigrid for coupled structured/unstructured meshes
 - Algorithm selection via machine learning

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Z machine diagram, from "Redesign of a High Voltage Test Bed for Marxes on Z", W.M. White et al., 2018.

AMG preconditioning for H(curl) systems is key enabling technology in Z machine simulations for determining power from Marx banks to Target.

https://trilinos.github.io/muelu.html

65 ATPESC 2020, July 26 - August 7, 2020

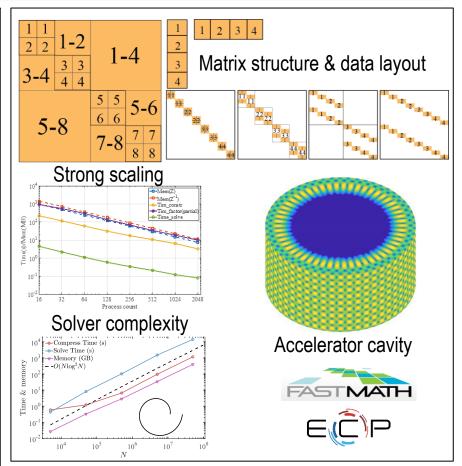
Gallery of highlights

- Overview of HPC numerical software packages
- 1 slide per package, emphasizing key capabilities, highlights, and where to go for more info
 - Listed first (alphabetically)
 - Packages featured in ATPESC 2020 lectures and hands-on lessons
 - Listed next (alphabetically)
 - Additional highlighted packages (not a comprehensive list)

ButterflyPACK

Fast direct solvers. Low-rank and butterfly compression. Distributedmemory parallel. Particularly for highly-oscillatory wave equations.

Capabilities


- Fast algebraic operations for rank-structured dense and sparse matrices, including matrix compression, multiplication, factorization and solution
- Support distributed-memory H-matrix, HODLR formats with low-rank and butterflies
- Particularly targeted at high-frequency electromagnetic, acoustic and elastic applications

Conceptual interfaces

- User input: a function to compute arbitrary matrix entries or to multiply the matrix with arbitrary vectors
- Both Fortran2008 and C++ interface available
- Highly interoperable with STRUMPACK

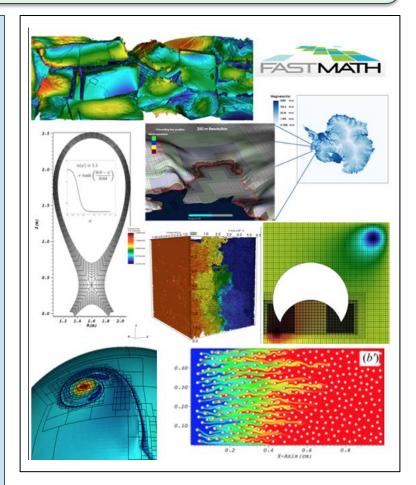
Open source software

- Software dependence: BLAS, LAPACK, SCALAPACK, ARPACK
- Newly released on github with tutorial examples available: https://github.com/liuyangzhuan/ButterflyPACK/tree/master/EXAMPLE

https://github.com/liuyangzhuan/ButterflyPACK

Scalable adaptive mesh refinement framework. Enables implementing scalable AMR applications with support for complex geometries.

Adaptive Mesh Refinement (AMR)


- Block structured AMR dynamically focuses computational effort where needed to improve solution accuracy
- Designed as a developers' toolbox for implementing scalable AMR applications
- Implemented in C++/Fortran
- Solvers for hyperbolic, parabolic, and elliptic systems of PDEs

Complex Geometries

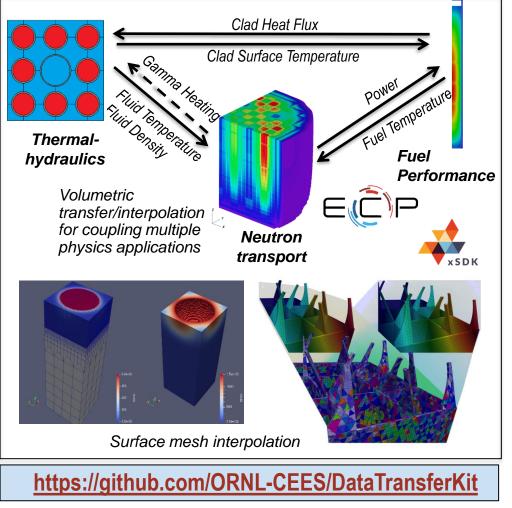
- Embedded-boundary (EB) methods use a cut-cell approach to embed complex geometries in a regular Cartesian mesh
- EB mesh generation is extremely efficient
- Structured EB meshes make high performance easier to attain

- Higher-order finite-volume

- Higher (4th)-order schemes reduce memory footprint & improve arithmetic intensity
- Good fit for emerging architectures
- Both EB and mapped-multiblock approaches to complex geometry

http://Chombo.lbl.gov

DataTransferKit CAK RIDGE

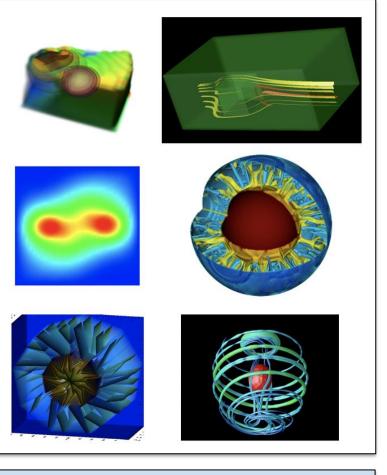

Open source library for parallel solution transfer. Support for grid-based and mesh-free applications.

Overview

- Transfers application solutions between grids with differing layouts on parallel accelerated architectures
- Coupled applications frequently have different grids with different parallel distributions; DTK is able to transfer solution values between these grids efficiently and accurately
- Used for a variety of applications including conjugate heat transfer, fluid structure interaction, computational mechanics, and reactor analysis

Capabilities

- Support for DOE leadership class machines through MPI+Kokkos programming model
- Algorithms demonstrated scalable to billions of degrees of freedom
- General geometric search algorithms
 - Comparable serial performance to Boost r-Tree and NanoFlann
 - · Also thread scalable on many core CPU and GPUs and distributed via MPI
- Grid interpolation operators and mesh-free transfer operators



deal.ll

deal.II — **an open source finite element library.** Modern interface to the complex data structures and algorithms required for solving partial differential equations computationally using state-of-the-art programming techniques.

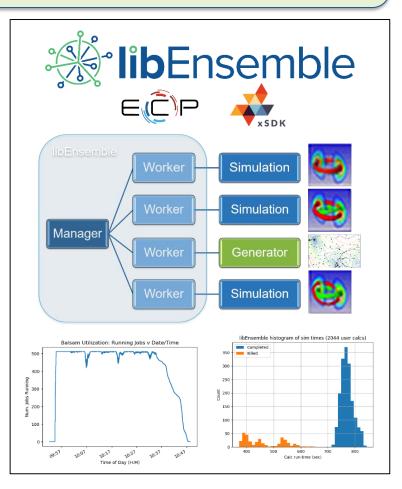
- Meshes and elements:
 - Supports h- and p-adaptive meshes in 1d, 2d, and 3d
 - Easy ways to adapt meshes: Standard refinement indicators already built in
 - Many standard finite element types (continuous, discontinuous, mixed, Raviart-Thomas, Nedelec, ABF, BDM,...)
 - Full support for coupled, multi-component, multi-physics problems
- Linear algebra:
 - Has its own sub-library for dense and sparse linear algebra
 - Interfaces to PETSc, Trilinos, UMFPACK, ScaLAPACK, ARPACK
- Pre- and postprocessing:
 - Can read most mesh formats
 - Can write almost any visualization file format
- Parallelization:
 - Uses threads and tasks on shared-memory machines
 - Uses up to 100,000s of MPI processes for distributed-memory machines
 - Can use CUDA
- Open-source software:
 - Used for a wide range of applications, including heart muscle fibers, microfluidics, oil reservoir flow, fuel cells, aerodynamics, quantum mechanics, neutron transport, numerical methods research, fracture mechanics, damage models, sedimentation, biomechanics, root growth of plants, solidification of alloys, glacier mechanics, and many others.
 - Freely available on GitHub

https://www.dealii.org

libEnsemble

A Python library to coordinate the evaluation of dynamic ensembles of calculations. Use massively parallel resources to accelerate the solution of design, decision, and inference problems.

libEnsemble aims for:


- -Extreme scaling
- -Resilience and fault tolerance
- -Monitoring and killing tasks and recovering resources
- -Portability and flexibility

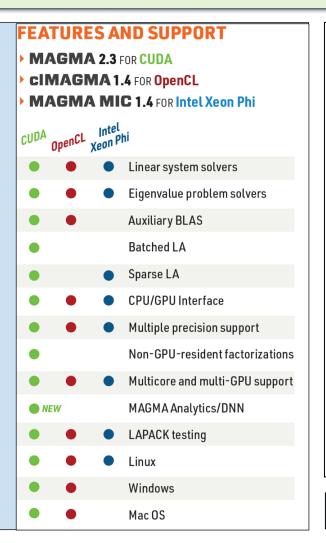
IibEnsemble features:

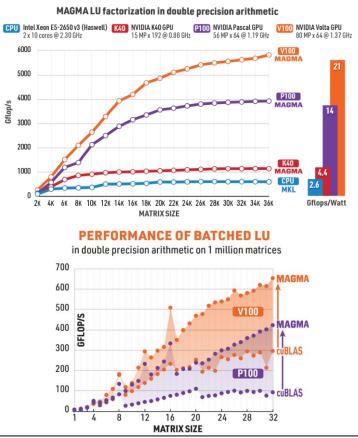
- -Communications using MPI, multiprocessing, or TCP
- —Support for calculations using parallel resources, including user-provided executables
- -Executor auto-detects system resources and launches user executables
- -Support on Summit (ORNL), Theta (ALCF), Cori (NERSC), Bridges (PSC)

Dynamic ensembles:

- -Workers are allocated simulations or generate input for simulations
- One use case: an optimization method generates parameters to be evaluated by a computationally expensive simulation
- -Example interfaces with PETSc, SciPy, and NLopt solvers are available

https://libensemble.readthedocs.io


MAGMA


Linear algebra solvers and spectral decompositions for hardware accelerators. Portable dense direct and sparse iterative solvers for GPUs and coprocessors.

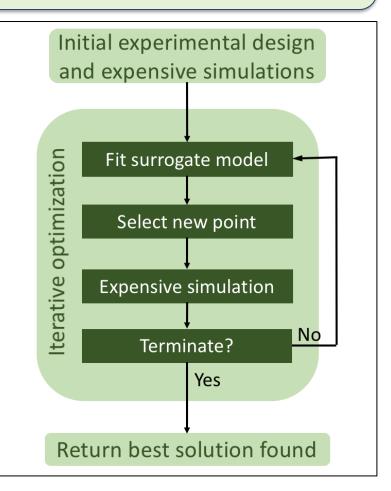
- Dense Linear Algebra Solvers
 - Linear systems of equations
 - Linear least squares
 - Singular value decomposition
- Matrix spectrum methods
 - Symmetric and non-symmetric eigenvalues
 - Generalized eigenvalue problems
 - Singular Value Decomposition
- Sparse Solvers & Tensor Computations

MAGMA SPARSE				
ROUTINES	BiCG, BiCGSTAB, Block-Asynchronous Jacobi, CG, CGS, GMRES, IDR, Iterative refinement, LOBPCG, LSQR, QMR, TFQMR			
PRECONDITIONERS	ILU / IC, Jacobi, ParILU, ParILUT, Block Jacobi, ISAI			
KERNELS	SpMV, SpMM			
DATA FORMATS	CSR, ELL, SELL-P, CSR5, HYB			

PERFORMANCE & ENERGY EFFICIENCY

http://icl.utk.edu/magma

MATLAB Surrogate Model Toolbox


Efficient optimization of computationally-expensive black-box problems. For integer, mixed-integer, and continuous variables. Your choice of surrogate model, sampling method, and initial design strategy. Easy to use. Freely available.

Capabilities

- Efficient solution of parameter optimization problems that involve time-consuming black-box HPC simulations during the objective function evaluation
- Surrogate models approximate the expensive function and aid in iterative selection of sample points
- Adaptive sampling for continuous, integer, and mixed-integer problems *without* relaxation of integer constraints

Available User options

- Surrogate model choices: radial basis functions, polynomial regression, multivariate adaptive regression splines, surrogate model ensembles
- Iterative sample point selection: local perturbations, global candidate points, minimization over the surrogate model
- Initial experimental design: Latin hypercube, symmetric Latin hypercube, design space corners

https://optimization.lbl.gov/downloads

PHIST Pipelined, Hybrid-parallel Iterative Solver Toolkit

Hybrid-parallel Iterative Sparse Eigenvalue and linear solvers Integration with different linear algebra backends and preconditioners

- Sparse Eigenvalue Solver: Block Jacobi-Davidson QR
 - Hermitian or non-Hermitian matrices
 - Generalized problems $Ax = \lambda Bx$ (for Hermitian pos. def. matrix **B**)
 - Blocked iterative linear solvers like GMRES, BiCGStab and CGMN
 - Can be accelerated by preconditioning
 - Matrix-free interface
 - Supported data types: D, Z, S, C

Algorithmic Building Blocks

- block orthogonalization
- Eigenvalue counting (kernel polynomial method/KPM)
- Fused basic operations for better performance
- Various interfaces
 - C, C++, Fortran 2003, Python

Can choose from several backends at compile time

 Image: Section of the section of th

https://bitbucket.org/essex/phist

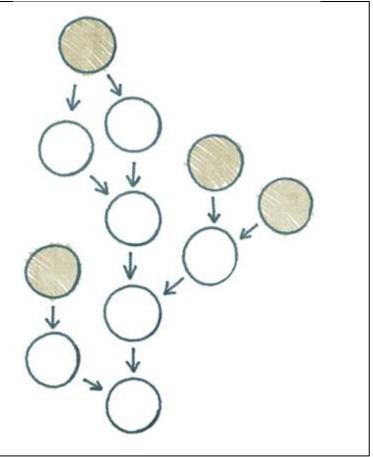
PLASMA

Linear algebra solvers and spectral decompositions for multicore processors. Portable and scalable dense solvers for large core counts.

> OpenMP MKL QUARK

> > 2000

15000


Dense Linear Algebra Solvers E Linear systems of equations Linear least squares Positive/Hermitian definitive solvers Matrix spectrum methods MODERN SOFTWARE STACK - Symmetric and non-symmetric eigenvalues PLASMA - Generalized eigenvalue problems core BLAS OpenMP Singular Value Decomposition LAPACKE CBLAS (C)LAPACK Data conversion and thread control BLAS double precision Cholesky factorization Intel Xeon E5-2650 v3 (Haswell), 2.3GHz, 20 cores 600 500 400 300

200

100

5000

10000

http://icl.utk.edu/plasma

SLEPc

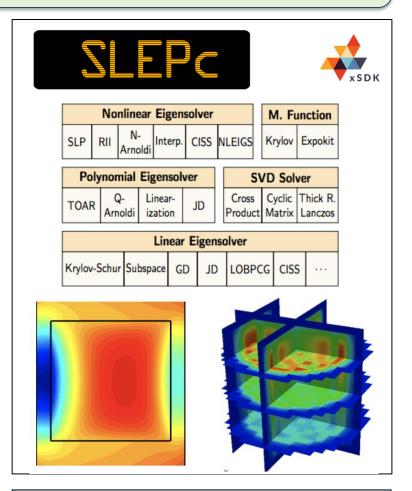
Scalable Library for Eigenvalue Problem Computations. Parallel solvers for linear and nonlinear eigenproblems. Also functionality for matrix functions.

Linear eigenvalue problems and SVD

- Standard and generalized eigenproblem, $Ax = \lambda x$, $Ax = \lambda Bx$; singular values $Au = \sigma v$

- Easy selection of target eigenvalues, shift-and-invert available for interior ones
- Many solvers: Krylov, Davidson, LOBPCG, contour integral, ...

Nonlinear eigenvalue problems

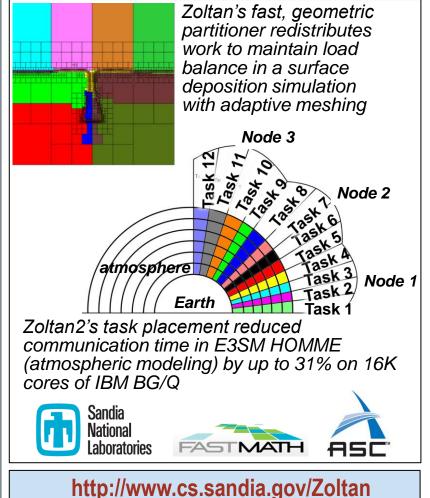

- Polynomial eigenproblem $P(\bar{\lambda})x=0$, for quadratic or higher-degree polynomials
- Solvers: Krylov with compact basis representation; Jacobi-Davidson
- General nonlinear eigenproblem $T(\lambda)x=0$, for any nonlinear function incl. rational

Matrix functions

- Parallel Krylov solver to evaluate y=f(A)v
- Support for matrix exponential, square root, etc. and combinations thereof

Extension of PETSc

- Runtime customization, portability and performance, C/C++/Fortran/python
- Can use any PETSc linear solvers and preconditioners


http://slepc.upv.es

Zoltan/Zoltan2

Parallel partitioning, load balancing, task placement, graph coloring, matrix ordering, unstructured communication utilities, distributed directories

- Partitioning & load-balancing support many applications
 - Fast geometric methods maintain spatial locality of data (e.g., for adaptive finite element methods, particle methods, crash/contact simulations)
 - Graph and hypergraph methods explicitly account for communication costs (e.g., for electrical circuits, finite element meshes, social networks)
 - Single interface to popular partitioning TPLs: XtraPuLP (SNL, RPI); ParMA (RPI); PT-Scotch (U Bordeaux); ParMETIS (U Minnesota)
 - MPI+X geometric partitioning using Kokkos for GPU and multicore
- Architecture-aware MPI task placement reduces application communication time
 - Places interdependent MPI tasks on "nearby" nodes in network
 - Reduces communication time and network congestion
- Graph algorithms for coloring, ordering, connectivity
- Use as a stand-alone library or as a Trilinos component

HandsOn Lessons

- Hand-coded heat equation intro
- Structured meshing & discretization
- Unstructured meshing & discretization
- Krylov solvers & preconditioners
- Sparse direct solvers
- Nonlinear solvers
- Time integration
- Numerical optimization

Github pages site:

https://xsdk-project.github.io/MathPackagesTraining2020/lessons/

ATPESC 20	20 Hands On
Lessons	
Meshing and Discretization with AMReX	A Block Structured Adaptive Mesh Refinement Framework
Hand Coded Heat	Why use numerical packages
Krylov Solvers and Algebraic Multigrid with hypre	Demonstrate utility of multigrid

Hello World (for numerical packages)

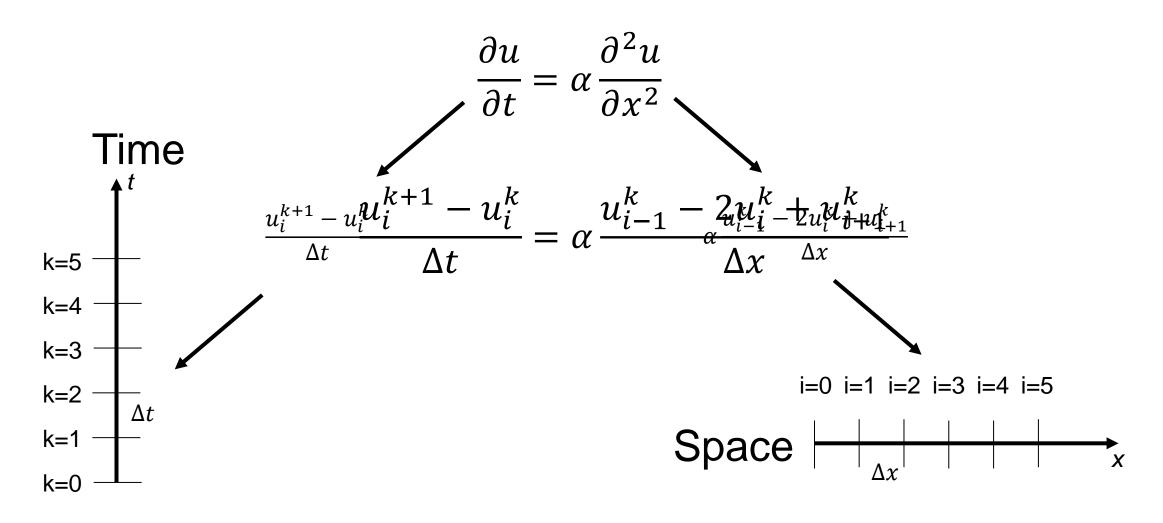
Mark C Miller, LLNL IDEAS-ECP/ATPESC SQE Support and Training Coordinator

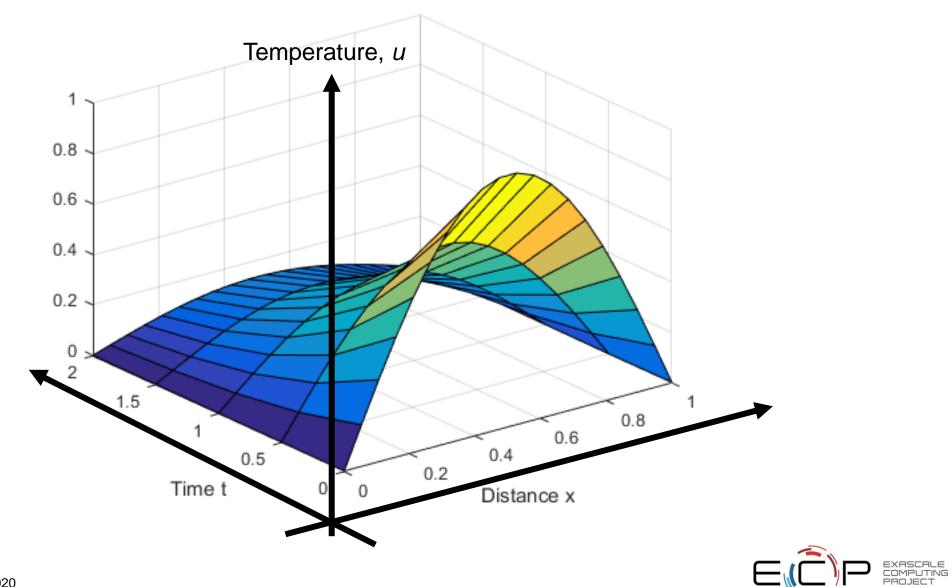
A Science Problem of Interest: Will My Water Pipes Freeze?

Х

The One-Dimensional Heat Equation

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$


- u(x,t) is temperature in Kelvin
- x is distance in meters
- t is time in seconds
- $-\alpha$ is thermal diffusivity of the material (m²/s)


Given boundary and initial conditions

- Left end-point: $u(0,t) = U_0$
- Right end-point: $u(L_x,t)=U_L$
- Initial temperature profile: u(x,0)=U(x)

We seek a numerical software solution for u(x,t) (all space & time)

Discretize: Continuous → Discrete

A numerical, iterative solution algorithm

$$\frac{u_i^{k+1} - u_i^k}{\Delta t} = \alpha \frac{u_{i-1}^k - 2u_i^k + u_{i+1}^k}{\Delta x}$$

$$u_i^{k+1} = r u_{i+1}^k + (1 - 2r) u_i^k + r u_{i-1}^k \qquad r = \alpha \frac{\Delta t}{(\Delta x)^2}$$

- *k* is indexing time, *t*, and *i* is indexing distance, *x*
- Known as "FTCS" algorithm
- Is an *explicit* method.
 - For more sophisticated cases, need a full-fledged solver.
- Known to be **unstable** for $r > \frac{1}{2}$

Exercise #1 (3 mins) **Open ftcs.C w/editor and write** the body of this function

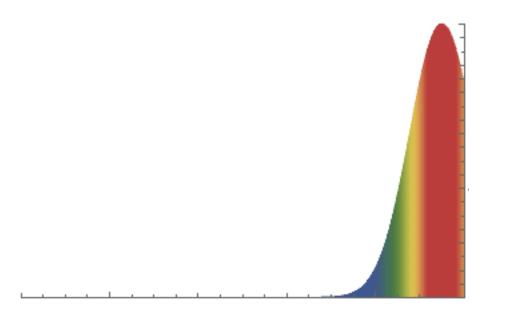
$$u_{i}^{k+1} = ru_{i+1}^{k} + (1 - 2r)u_{i}^{k} + ru_{i-1}^{k}$$
$$r = \alpha \frac{\Delta t}{(\Delta x)^{2}}$$

```
bool
update solution ftcs (
   int n,
   Double *uk1,
   Double const *uk0,
   Double alpha,
   Double dx, Double dt,
```

```
// true if valid, false if not
```

```
// number of values
                          // new values: u(i) i=0...n-1 @ t=k+1
                          // last values: u(i) i=0...n-1 @ t=k
                          // thermal diffusivity
                          // spacing in space, x, and time, t.
Double bc0, Double bc1) // boundary conditions @ x=0 & x=L
```


Exercise #2 (1 min) Build and test the application


% make

- c++ -c heat.C -o heat.o
- c++ -c utils.C -o utils.o
- c++ -c args.C -o args.o
- c++ -c exact.C -o exact.o
- c++ -c ftcs.C -o ftcs.o
- c++ -c upwind15.C -o upwind15.o
- c++ -c crankn.C -o crankn.o

c++ -o heat heat.o utils.o args.o exact.o ftcs.o upwind15.o crankn.o -lm

• How might we test it?

- We know steady state solution for bc0=A and bc1=B is line from A to B

Exercise #3 (2 mins): Run the application to model a problem of interest

- Outside temp has been same as inside temp @ 70 °F for a long time
- Night/Storm will last 15.5 hours @ -40 °F
- Walls are 0.25 meters thick wood, pipe is 0.1 meters diameter

Material	Thermal Diffusivity, α, (m²/s)
Wood	8.2 x 10 ⁻⁸
Adobe Brick	2.7 x 10 ⁻⁷
Common ("red") brick	5.2 x 10 ⁻⁷

Exercise #4 (1 min) Analyze the results

Criterion: Will conclude pipe freezes if... ...center point drops below freezing before storm passes

make plot PTOOL=[visit|gnuplot|pyplot] RUNAME=<run-name>

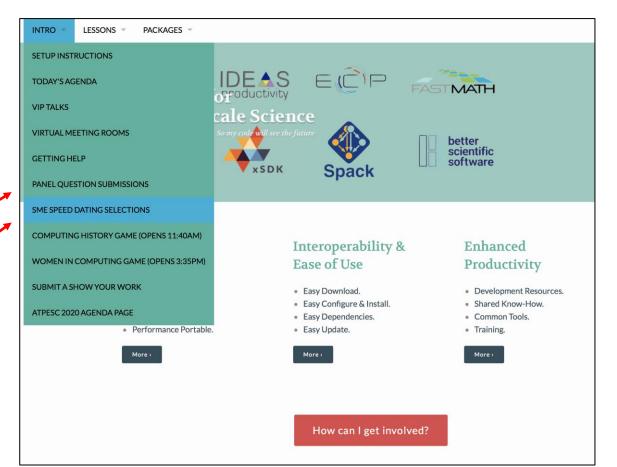
What if our problem was to find the optimum wall width?

Simplifications hide challenges of math package software engineering

Challenges in numerical algorithms

- Discretizations: Dimensions, geometries, material interfaces, etc
- Time Integrators: Adaptive, faster convergence, efficiencies, etc.
- Solvers: Implicit, explicit, iterative, direct, preconditioners, etc.
- Optimization: Outer loops, nonintrusive, reduced-order models, etc.
- Validation & verification: Vetted, trusted results, community accepted

Challenges in software development


- Time and space performance
- Scalability & performance portability
- Encapsulation, interfaces & interoperability
- Documentation, ease of installation, ease of use
- Sustainable open source, supported with regular updates, bug tracking/fixing
- Support for user-defined customization and extensibility

Next steps

- Attend parallel sessions
 - 10:30 CDT and 11:45 CDT
 - Access Zoom rooms via
 - <u>https://xsdk-project.github.io/MathPackagesTraining2020/agenda</u>
- During breaks and lunch
 - Submit questions for panelists (optional)
 - Sign up for discussions with numerical
 software developers (optional)
 - Your email address
 - Select 1st, 2nd, and 3rd priorities
 - Brief description of interests
 - Complete by 3:30 pm CDT

Panel session: Main Room @ 1:45 pm CDT

Today's agenda

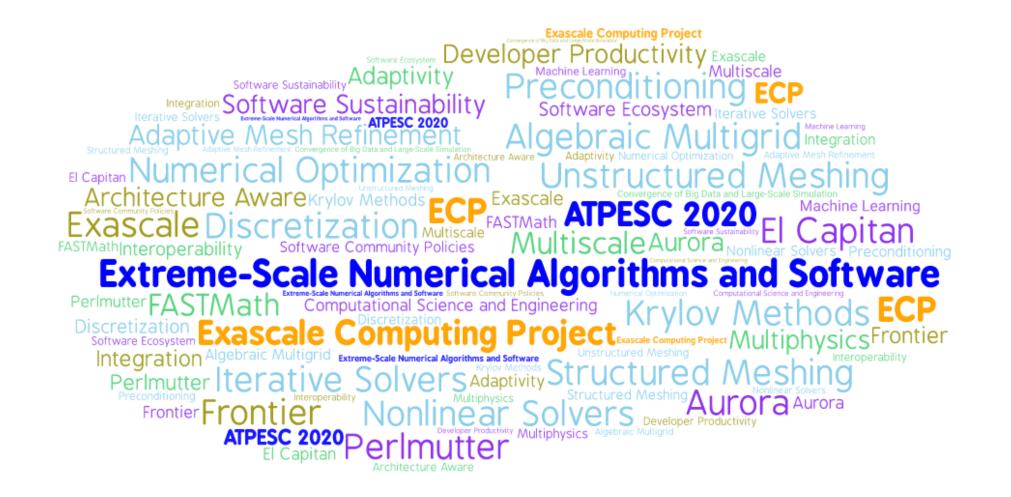
https://xsdk-project.github.io/MathPackagesTraining2020/agenda

Mix-n-Match topics to your interests See Synopses from Agenda

Unstructured Discretization (with MFEM/PUMI) Slides

Unstructured meshes can yield required levels of accuracy using fewer degrees of freedom at the cost of more complex parallel data structures and algorithms. To support the ability of application code developers to take advantage of unstructured meshes, FASTMath develops core tools to support the development of unstructured mesh simulation capabilities. This lecture will first introduce the highly extendible MFEM high order finite element solver library and then overview the PUMI unstructured mesh tools developed to support mesh adaptation, load balancing and PIC calculations.

Direct Solvers (with SuperLU/Strumpack) Slides


Direct Solvers are presented in three different time slots, each with a slightly different emphasis...

- Session 1 (10:30am-11:30am):
- Sparse direct solvers (both SuperLU and Strumpack), 30 minutes (Sherry)
- Low rank approximation techniques in Strumpack, 15 minutes (Pieter)
- SuperLU hands-on demo, 15 minutes (Sherry)
- Session 2 (11:45am-12:45pm):
- Sparse direct solvers (both SuperLU and Strumpack), 30 minutes (Sherry)
- Low rank approximation techniques in Strumpack, 15 minutes (Pieter)
- Strumpack hands-on demo, 15 minutes (Pieter)
- Session 4 (3:40pm 4:30pm):
- Sparse direct solvers (both SuperLU and Strumpack), 30 minutes (Sherry)
- Low rank approximation techniques in Strumpack, 15 minutes (Pieter)
- Q&A. (Sherry, Pieter)

CDT Start	Mins	Торіс	Speaker(s)	Virtual Venue
09:30	55	Intro. to Numerical Libraries	Lois Curfman McInnes Mark Miller	Main-Room
10:25	5	Telecon Transition		
10:30	60	Parallel Session One		
\backslash		Structured Discretization (with AMReX)	Ann Almgren Don Willcox	Frontier
	$\mathbf{\hat{\boldsymbol{\zeta}}}$	Unstructured Discretization (with MFEM/PUMI)	Aaron Fisher Mark Shephard	Aurora
		Iterative Solvers & Preconditioners (with MueLu)	Jonathan Hu Christian Glusa	Perlmutter
	<	Direct Solvers (with SuperLU/Strumpack)	Sherry Li Pieter Ghysels	El-Capitan

Addendum ... ATPESC afternoon sessions

Next steps: Extreme-Scale Numerical Algorithms and Software

Row 1:

Row 2:

Row 3:

Row 4:

Not shown:

Dan Reynolds

Don Willcox

Ann Almgren Satish Balay

Mark Miller Aaron Fisher Sherry Li

Sara Osborn David Gardner

Ulrike Yang

Richard Mills Jonathan Hu

Alp Dener

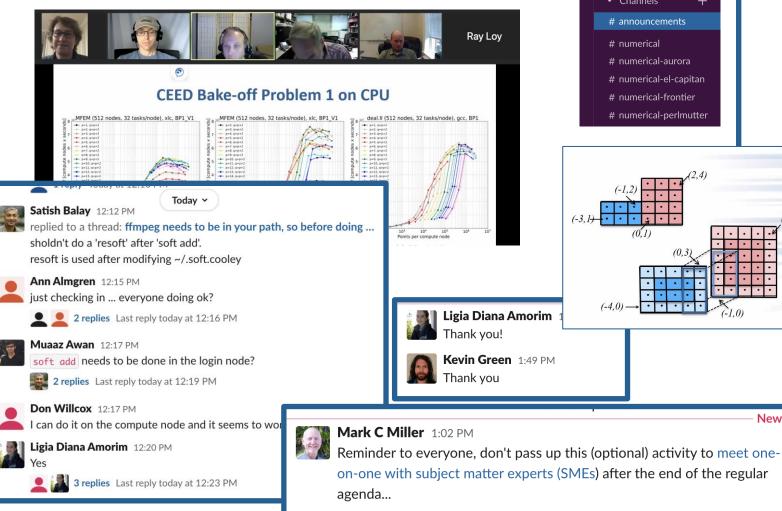
https://xsdk-project.github.io/MathPackagesTraining2020/agenda

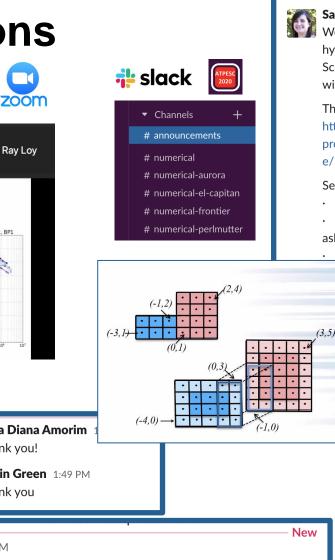
- Panel session: Main Room @ 1:45 pm CDT
- During breaks and lunch
 - Sign up for discussions with numerical software developers (optional)
 - Your email address
 - Select 1st, 2nd, and 3rd priorities
 - Brief description of interests
 - Complete by 3:30 pm CDT

Subject Matter Expert (SME) 2-on-1 interviews

This is an optional activity. It is a great opportunity to spend some time chatting with various subject matter experts (SMEs).

In the form below, you may enter your first, second and third priorities for up to three, 20 minute, two-on-one discussions with various SMEs during the evening session.





Parallel morning sessions

A few highlights

Sarah Osborn 12:43 PM Welcome to Session 2: Iterative Solvers & Algebraic Multigrid (with hypre) of Track 5 - Numerical Algorithms and Software for Extreme-Scale Science. Ulrike Yang (Lawrence Livermore National Laboratory) will begin presenting at 11:45am CDT. The hands-on instructions are here: https://xsdkproject.github.io/MathPackagesTraining2020/lessons/krylov_amg_hypr Session organization notes are listed below: Today ~ Pieter Ghysels ask Please follow along with the SuperLU hands on, and post any questions/comments here. We are monitoring this. (edited) Lois Curfman McInnes 12:31 PM

Friendly reminder: Next parallel sessions begin at 11:45 am CDT, see info and Zoom links here: https://xsdk-

project.github.io/MathPackagesTraining2020/age nda

ATPESC 2020 Math Packages Training

Numerical Packages Agenda

Software Carpentry Style Lessons for Math Packages

Thomas Linker 12:37 PM Thanks this was great!

New

Panel: Contributing to the Numerical Software Community

1:45 pm CDT, Main Room in Zoom

- Q&A Session: ATPESC learners ask questions about working with numerical packages and the community of numerical package developers
 - Questions in #numerical slack channel (and via Google form earlier today)

Jonathan Hu, SNL

Sherry Li, LBL

Richard Mills, ANL

Moderator

Mark Miller, LLNL

Cameron Smith, RPI

Ulrike Yang, LLNL

Panel Question Submission Form

Please enter here a question you would like to ask our panelists during the 45 minute panel session.

We ask that you please include your name in case we may need to call upon you to clarify your question.

95 ATPESC 2020, July 26 - August 7, 2020

Afternoon agenda

https://xsdk-project.github.io/MathPackagesTraining2020/agenda

Nonlinear Solvers (with PETSc)			
Slides			
We will begin with a quick overview of iterative solvers for nonlinear system a deeper look into Newton-Krylov methods and how to use them via the PE	TSc Scalable		
Nonlinear Equation Solvers (SNES) component. We will do some hands-on e a classic computational fluid dynamics benchmark, the lid-driven cavity pro-			
end by looking at how nonlinear composition and preconditioning can be us		tion (with SUNDIALS)	
wide array of nonlinear solvers from the algorithmic building blocks in SNE	Slides		
strate how these techniques can handle particularly difficult nonlinearities.	integration libraries in	liscuss the role and impact of high order, adaptive, and flexible time solution accuracy and computational efficiency of large-scale simula- variety of backgrounds among ATPESC participants, we will briefly	
	nonlinear and linear	integrators in the HPC landscape, and their reliance on scalable r solver libraries, <u>vri</u> es of time integration methods (explicit/implicit/IMEX),	
Optimization (with TAO)		properties of time integration methods (order of accuracy, linear	
Slides This lecture will provide an introduction to numerical optimization with a theoretical focus on simulation-based problems. We will introduce the user interfaces for the Toolkit for Ad- vanced Optimization (TAO) package within the PETSc library and exercise several gradient- ity, accuracy, temporal adaptivity, and the role of problem ie hands-on exercises focus on time-dependent PDEs, and			
		ately half of the time period in lecture, followed by hands-on exer- ity, accuracy, temporal adaptivity, and the role of problem-specific he hands-on exercises focus on time-dependent PDEs, and use the rary for time integration, along with the AMReX library for spatial	

02:35	50	Parallel Session Three		
		Nonlinear Solvers (with PETSc)	Richard Tran Mills	Frontier
		Optimization (with TAO)	Alp Dener	Aurora
		Time Integration (with SUNDIALS)	Dan Reynolds	Perlmutter
		Iterative Solvers & Preconditioners (with MueLu)	Jonathan Hu Christian Glusa	El-Capitan
03:25	15	Break SME Selections Due		
03:40	50	Parallel Session Four		
		Nonlinear Solvers (with PETSc)	Richard Tran Mills	Frontier
		Optimization (with TAO)	Alp Dener	Aurora
		Time Integration (with SUNDIALS)	Dan Reynolds	Perlmutter
		Direct Solvers (with SuperLU/Strumpack)	Sherry Li Pieter Ghysels	El-Capitan
04:30	5	Telecon Transition		
04:35	25	Working with Numerical Packages in Practice	Ann Almgren	Main-Room
		END OF OFFICIAL AGENDA		
05:00	15	Break		
05:15	80	SME Speed Dating OPTIONAL ACTIVITY		

Thank you to all ATPESC staff

From Ligia Diana Amorim to Everyone:

And the great tutorials like the ones here at ATPESC also help a lot!

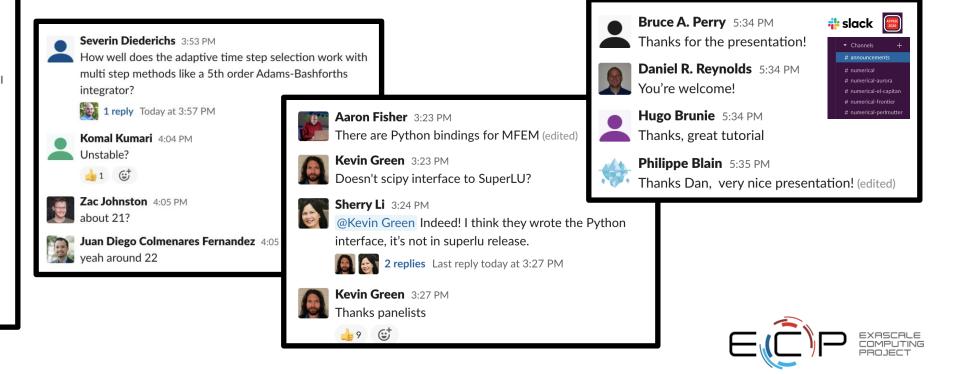
From Mark C. Miller to Everyone Ditto

From Neil Mehta to Everyone: Thank you!

From Valeria Barra to Everyone:

I also want to add that I really appreciated the website put together for today's tutorials. Thanks for the nice work!

zoom


From Ligia Diana Amorim to Everyone: Thank you all for the great sessions today! Yes, indeed, the website was great to follow all the hands on From Zhi Jackie Yao to Everyone: Thank you! From Juan Colmenares to Everyone: yes From Kevin Green to Everyone: Thanks for all of the hands on material today! Was a lot of info to take in a once, but I'm looking forward to slowly digesting it all over the next evenings :)

From Mukund Raj to Everyone: Thanks all for the presentation and great materials!

For their outstanding work in running the 2-week ATPESC program

And thank you to all ATPESC attendees for engaging questions and discussions!

Some Zoom and Slack chats during sessions on extreme-scale numerical algorithms and software

Special thanks to Ray Loy and Yasaman Ghadar