
Krylov Solvers and Preconditioning

Jonathan Hu and Christian Glusa, {jhu,caglusa}@sandia.gov

Presented to ATPESC 2020 Participants

August 4, 2020

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

1 / 16

Discretization of partial differential equations gives rise to large linear systems of equations

A~x = ~b,

where A is sparse, i.e. only a few non-zero entries per row.

Example

2D Poisson equation:

−∆u = f inΩ = [0, 1]2,

u = 0 on ∂Ω.

Central finite differences on a uniform mesh {xi,j}:

4ui,j − ui,j+1 − ui,j−1 − ui+1,j − ui−1,j = f(xi,j)∆x2 if xi,j 6∈ ∂Ω,

ui,j = 0 if xi,j ∈ ∂Ω.

→ 5 entries or less per row of A.

Instead of dense format, keep matrix A in a sparse format e.g. compressed sparse row (CSR):

A =

 1 2 0
3 4 0
0 0 5


rowptr =

(
0 2 4 5

)
indices =

(
0 1 0 1 2

)
values =

(
1 2 3 4 5

)

2 / 16

Available solvers

Solve

A~x = ~b.

Option 1: Direct solvers (think Gaussian elimination)

Factorisation scales asO(n3).

Factors are a lot denser than A→memory cost.

Parallel implementation not straightforward.

Does not require a lot of information about the structure of A.

Observation

A hasO(n) non-zero entries. → Optimal complexity for a solve isO(n) operations.

Option 2: Iterative solvers

Exploit an operation that hasO(n) complexity: mat-vec.

Easy to parallelize.

Can have small memory footprint. (In the best case, we only need to keep a single vector.)

Generally more restrictions on structure of A.

3 / 16

Available solvers

Solve

A~x = ~b.

Option 1: Direct solvers (think Gaussian elimination)

Factorisation scales asO(n3).

Factors are a lot denser than A→memory cost.

Parallel implementation not straightforward.

Does not require a lot of information about the structure of A.

Observation

A hasO(n) non-zero entries. → Optimal complexity for a solve isO(n) operations.

Option 2: Iterative solvers

Exploit an operation that hasO(n) complexity: mat-vec.

Easy to parallelize.

Can have small memory footprint. (In the best case, we only need to keep a single vector.)

Generally more restrictions on structure of A.

3 / 16

Krylov methods

Based on mat-vecs, we can compute

~y0 = ~x0 (“initial guess”’)

~yk+1 = ~yk +
(
~b− A~yk

)
︸ ︷︷ ︸
“residual”

and recombine in some smart way to obtain an approximate solution

~xK =
K∑

k=0

αk~y
k.

Expressions for αk typically involve inner products between vectors in the so-called Krylov space

span
{
~yk

}
=

{
~x0,A~x0,A2~x0,A3~x0, . . .

}
.

Keeping the entire Krylov space can be quite expensive.

Computing inner products involves an all-reduce which can be costly at large scale.

Two particular Krylov methods:

Conjugate gradient (CG)

Use a short recurrence, i.e. does not keep the whole

Krylov space around.

Provably works for symmetric positive definite (spd) A.

Generalized Minimum Residual (GMRES, GMRES(K))

Works for unsymmetric systems.

GMRES keeps the whole Krylov space around.

GMRES(K) discards the Krylov space after K iterations.

4 / 16

Convergence of Krylov methods
CG convergence result: ∣∣∣∣~xK −~x

∣∣∣∣ ≤ (
1− 1/

√
κ(A)

)K ∣∣∣∣~x0 −~x
∣∣∣∣ ,

where κ(A) is the condition number of A:

κ(A) = ||A||
∣∣∣∣A−1

∣∣∣∣ .
A common theme with Krylov methods:

κmeasures how hard it is to solve the system, i.e. how many iterations are required to reach a given tolerance.

Idea

Reduce the condition number (“Preconditioning”).

Instead of solving

A~x = ~b,

solve

PA~x = P~b or AP~z = ~b, ~x = P~z

with preconditioner P so that κ(PA) � κ(A).
Two requirements that must be balanced:

Multiplication with P should be comparable in cost to A.

P ≈ A−1.

5 / 16

Some simple preconditioners

Jacobi: P = D−1, where D is the diagonal of A.

Gauss-Seidel: P = (D+ L)−1
, where L is the lower or upper triangular part of A.

Polynomial preconditioners: P = p(A), where p is some carefully chosen polynomial.

Incomplete factorizations such as ILU or Incomplete Cholesky.

6 / 16

Krylov methods and preconditioners: Packages in the Trilinos project

www.trilinos.org

Support for hybrid (MPI+X) parallelism, X ∈ {OpenMP, CUDA, . . . }
C++, open source, primarily developed at Sandia

Belos - iterative linear solvers Ifpack2 - single-level solvers and preconditioners

Standard methods:

Conjugate Gradients (CG), Generalized Minimal Residual

(GMRES)

TFQMR, BiCGStab, MINRES, Richardson / fixed-point

Advanced methods:

Block GMRES, block CG/BiCG

Hybrid GMRES, CGRODR (block recycling GMRES)

TSQR (tall skinny QR), LSQR

Ongoing research:

Communication avoiding methods

Pipelined and s-step methods

incomplete factorisations

ILUT

RILU(k)

relaxation preconditioners

Jacobi

Gauss-Seidel (and a multithreaded variant)

Successive Over-Relaxation (SOR)

Symmetric versions of Gauss-Seidel and SOR

Chebyshev

additive Schwarz domain decomposition

7 / 16

www.trilinos.org

Hands-on: Krylov methods and preconditioning

Go to https://xsdk-project.github.io/MathPackagesTraining2020/
lessons/krylov_amg_muelu/

Sets 1 and 2

20 mins

8 / 16

https://xsdk-project.github.io/MathPackagesTraining2020/lessons/krylov_amg_muelu/
https://xsdk-project.github.io/MathPackagesTraining2020/lessons/krylov_amg_muelu/

The motivation for Multigrid methods
Convergence of Jacobi:

High frequency error is damped quickly, low frequency error slowly

9 / 16

The motivation for Multigrid methods

Convergence of Jacobi:

Local transmission of information cannot result in a scalable method

10 / 16

Multigrid

Main idea: accelerate solution of A~x = ~b by using ”hierarchy” of coarser
problems

Remove high-frequency error on fine mesh, where application matrix lives

(using Jacobi or another cheap preconditioner),

Move to coarser mesh

Remove high-frequency error on coarser mesh by solving residual equation

Move to coarser mesh

.

.

.

Solve a small problem on a very coarse mesh.

Move back up.

Repeat.

Geometric multigrid requires coarse mesh information.

Algebraic multigrid constructs coarser matrices on the fly based on fine-level matrix entries.

11 / 16

Software packages for Algebraic Multigrid

Classical AMG (hypre)

Developed at Lawrence Livermore National Lab, presentation by Ulrike Yang, 11:45 AM CDT.

Smoothed Aggregation Multigrid (PETSc)

Developed by Mark Adams and the PETSc team.

Smoothed Aggregation Multigrid (Trilinos)
Two multigrid packages in Trilinos:

ML

C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)

MueLu

Templated C++ library with support for 2B+ unknows and next-generation architectures (OpenMP, CUDA, …)

12 / 16

The MueLu package

Algebraic Multigrid package in Trilinos

Templated C++ library with support for 2B+ unknowns and next-generation

architectures (OpenMP, CUDA, …)

Robust, scalable, portable AMG preconditioning is critical for many large-scale
simulations

Multifluid plasma simulations

Shock physics

Magneto-hydrodynamics (MHD)

Low Mach computational fluid dynamics (CFD)

Capabilities

Aggregation-based and structured coarsening

Smoothers: Jacobi, Gauss-Seidel, `1 Gauss-Seidel, multithreaded Gauss-Seidel,
polynomial, ILU

Load balancing for good parallel performance

Ongoing research

performance on next-generation architectures

AMG for multiphysics

Multigrid for coupled structured/unstructured problems

Algorithm selection via machine learning

www.trilinos.org

13 / 16

www.trilinos.org

Hands-on: Algebraic Multigrid

Go to https://xsdk-project.github.io/MathPackagesTraining2020/
lessons/krylov_amg_muelu/

#set-3---krylov-solver-multigrid-preconditioner
Sets 3

20 mins

14 / 16

https://xsdk-project.github.io/MathPackagesTraining2020/lessons/krylov_amg_muelu/#set-3---krylov-solver-multigrid-preconditioner
https://xsdk-project.github.io/MathPackagesTraining2020/lessons/krylov_amg_muelu/#set-3---krylov-solver-multigrid-preconditioner
https://xsdk-project.github.io/MathPackagesTraining2020/lessons/krylov_amg_muelu/#set-3---krylov-solver-multigrid-preconditioner

Next generation architectures and applications

Optimizing Multigrid Setup for

Structured Grids

Multigrid for Maxwell’s equations Multigrid for low Mach CFD

Exploit mesh structure to speed

up multigrid setup & solve.

Stay as “algebraic” as possible.

Full Maxwell system

Coupling with particle code

Target architectures:

Haswell, KNL, GPU

Largest problem to date: ∼34B
unknowns

Critical component in wind

turbine simulations

Two linear solves:

Momentum:

GMRES/symmetric

Gauss-Seidel

Pressure: GMRES/AMG

15 / 16

Take away messages

CG works for spd matrix and preconditioner. GMRES works for unsymmetric systems, but requires more memory.

Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solve.

Multigrid can lead to a constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?

We are always looking for motivated

summer students (LINK),

postdocs (LINK).

Please contact us!

16 / 16

https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/summerprog.cfm
https://cg.sandia.gov/psp/applicant/EMPLOYEE/HRMS/c/HRS_HRAM_FL.HRS_CG_SEARCH_FL.GBL?Page=HRS_APP_JBPST_FL&Action=U&FOCUS=Applicant&SiteId=1&JobOpeningId=672078&PostingSeq=1

