Exceptional service in the national interest

Krylov Solvers and Preconditioning

Jonathan Hu and Christian Glusa, {jhu,caglusa}@sandia.gov

Presented to ATPESC 2020 Participants August 4, 2020

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Discretization of partial differential equations gives rise to large linear systems of equations

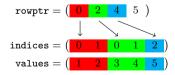
$$\mathbf{A}\vec{x}=\vec{b},$$

where **A** is sparse, i.e. only a few non-zero entries per row.

Example		
2D Poisson equation:	Central finite differences on a uniform mesh $\{x_{i,j}\}$:	
$-\Delta u = f \text{ in } \Omega = [0, 1]^2,$ $u = 0 \text{ on } \partial \Omega.$	$4u_{i,j} - u_{i,j+1} - u_{i,j-1} - u_{i+1,j} - u_{i-1,j} = f(x_{i,j})\Delta x^2$ $u_{i,j} = 0$	$ \begin{array}{l} \text{if } x_{i,j} \not\in \partial \Omega, \\ \text{if } x_{i,j} \in \partial \Omega. \end{array} \end{array} $

\rightarrow 5 entries or less per row of **A**.

Instead of dense format, keep matrix A in a sparse format e.g. compressed sparse row (CSR):



Available solvers

Solve

Option 1: Direct solvers (think Gaussian elimination)

- Factorisation scales as $\mathcal{O}(n^3)$.
- **E** Factors are a lot denser than $\mathbf{A} \rightarrow$ memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of A.

Observation

A has $\mathcal{O}(n)$ non-zero entries. \rightarrow Optimal complexity for a solve is $\mathcal{O}(n)$ operations.

Option 2: Iterative solvers

- **Exploit** an operation that has $\mathcal{O}(n)$ complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- Generally more restrictions on structure of A.

Available solvers

Solve

 $\mathbf{A}\vec{\mathbf{x}}=\vec{\mathbf{b}}.$

Option 1: Direct solvers (think Gaussian elimination)

- Factorisation scales as $\mathcal{O}(n^3)$.
- **Factors** are a lot denser than $\mathbf{A} \rightarrow$ memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of A.

Observation

A has $\mathcal{O}(n)$ non-zero entries. \rightarrow Optimal complexity for a solve is $\mathcal{O}(n)$ operations.

Option 2: Iterative solvers

- **Exploit** an operation that has $\mathcal{O}(n)$ complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- Generally more restrictions on structure of A.

Krylov methods

Based on mat-vecs, we can compute

$$\vec{y}^{0} = \vec{x^{0}}$$
("initial guess")
$$\vec{y}^{\texttt{K}+1} = \vec{y}^{\texttt{K}} + \underbrace{\left(\vec{b} - \mathbf{A}\vec{y}^{\texttt{K}}\right)}_{\text{"residual"}}$$

and recombine in some smart way to obtain an approximate solution

$$\vec{\mathbf{x}}^{\mathsf{K}} = \sum_{k=0}^{\mathsf{K}} \alpha_k \vec{\mathbf{y}}^{\mathsf{K}}$$

Expressions for α_k typically involve inner products between vectors in the so-called *Krylov space* span $\{\vec{y}^k\} = \{\vec{x^0}, \vec{Ax^0}, \vec{A^2x^0}, \vec{A^3x^0}, \dots\}$.

- Keeping the entire Krylov space can be quite expensive.
- Computing inner products involves an all-reduce which can be costly at large scale.

Two particular Krylov methods:

- Conjugate gradient (CG)
 - Use a short recurrence, i.e. does not keep the whole Krylov space around.
 - Provably works for symmetric positive definite (spd) A.

- Generalized Minimum Residual (GMRES, GMRES(K))
 - Works for unsymmetric systems.
 - GMRES keeps the whole Krylov space around.
 - GMRES(K) discards the Krylov space after K iterations.

Convergence of Krylov methods

CG convergence result:

$$\left\| \vec{\mathbf{x}}^{\mathsf{K}} - \vec{\mathbf{x}} \right\| \le \left(1 - 1/\sqrt{\kappa(\mathbf{A})} \right)^{\mathsf{K}} \left\| \vec{\mathbf{x}}^{0} - \vec{\mathbf{x}} \right\|,$$

where $\kappa(\mathbf{A})$ is the condition number of \mathbf{A} :

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|.$$

A common theme with Krylov methods:

 κ measures how hard it is to solve the system, i.e. how many iterations are required to reach a given tolerance.

Idea

Reduce the condition number ("Preconditioning").

Instead of solving

$$A\vec{x}=\vec{b},$$

solve

$$\mathbf{P}\mathbf{A}\vec{x} = \mathbf{P}\vec{b}$$
 or

$$\mathbf{AP}\vec{z} = \vec{b}, \quad \vec{x} = \mathbf{P}\vec{z}$$

with preconditioner **P** so that κ (**PA**) $\ll \kappa$ (**A**). Two requirements that must be balanced:

■ Multiplication with **P** should be comparable in cost to **A**.

P \approx **A**⁻¹.

- **J**acobi: $\mathbf{P} = \mathbf{D}^{-1}$, where **D** is the diagonal of **A**.
- Gauss-Seidel: $\mathbf{P} = (\mathbf{D} + \mathbf{L})^{-1}$, where \mathbf{L} is the lower or upper triangular part of \mathbf{A} .
- Polynomial preconditioners: $\mathbf{P} = p(\mathbf{A})$, where p is some carefully chosen polynomial.
- Incomplete factorizations such as ILU or Incomplete Cholesky.

Krylov methods and preconditioners: Packages in the Trilinos project

Support for hybrid (MPI+X) parallelism, $X \in \{\text{OpenMP, CUDA, } \dots\}$

C++, open source, primarily developed at Sandia

www.trilinos.org

Belos - iterative linear solvers

- Standard methods:
 - Conjugate Gradients (CG), Generalized Minimal Residual (GMRES)
 - TFQMR, BiCGStab, MINRES, Richardson / fixed-point
- Advanced methods:
 - Block GMRES, block CG/BiCG
 - Hybrid GMRES, CGRODR (block recycling GMRES)
 - TSQR (tall skinny QR), LSQR
- Ongoing research:
 - Communication avoiding methods
 - Pipelined and s-step methods

Ifpack2 - single-level solvers and preconditioners

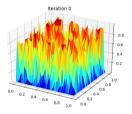
- incomplete factorisations
 - ILUT
 - RILU(k)
- relaxation preconditioners
 - Jacobi
 - Gauss-Seidel (and a multithreaded variant)
 - Successive Over-Relaxation (SOR)
 - Symmetric versions of Gauss-Seidel and SOR
 - Chebyshev
- additive Schwarz domain decomposition

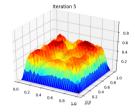
Randia National

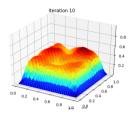

```
Hands-on: Krylov methods and preconditioning
Go to https://xsdk-project.github.io/MathPackagesTraining2020/
lessons/krylov_amg_muelu/
Sets 1 and 2
20 mins
```

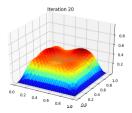
The motivation for Multigrid methods

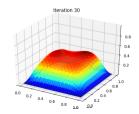
Convergence of Jacobi: High frequency error is damped quickly, low frequency error slowly

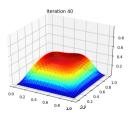






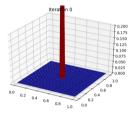


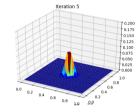


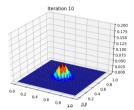


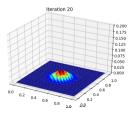
The motivation for Multigrid methods

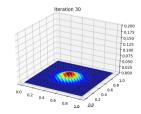
Convergence of Jacobi: Local transmission of information cannot result in a scalable method

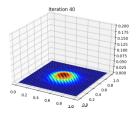




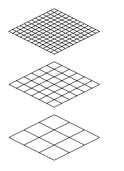








Multigrid



- Main idea: accelerate solution of $A\vec{x} = \vec{b}$ by using "hierarchy" of coarser problems
- Remove high-frequency error on fine mesh, where application matrix lives (using Jacobi or another cheap preconditioner),
- Move to coarser mesh
- Remove high-frequency error on coarser mesh by solving residual equation
- Move to coarser mesh
- Solve a small problem on a very coarse mesh.
- Move back up.
- Repeat.
- Geometric multigrid requires coarse mesh information.
- Algebraic multigrid constructs coarser matrices on the fly based on fine-level matrix entries.

Sandia National

Software packages for Algebraic Multigrid

Classical AMG (hypre)

Developed at Lawrence Livermore National Lab, presentation by Ulrike Yang, 11:45 AM CDT.

- Smoothed Aggregation Multigrid (PETSc)
 Developed by Mark Adams and the PETSc team.
- Smoothed Aggregation Multigrid (Trilinos) Two multigrid packages in Trilinos:
 - ML

C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)

MueLu

Templated C++ library with support for 2B+ unknows and next-generation architectures (OpenMP, CUDA, ...)

The MueLu package

- Algebraic Multigrid package in Trilinos
 Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, ...)
- Robust, scalable, portable AMG preconditioning is critical for many large-scale simulations
 - Multifluid plasma simulations
 - Shock physics
 - Magneto-hydrodynamics (MHD)
 - Low Mach computational fluid dynamics (CFD)
- Capabilities
 - Aggregation-based and structured coarsening
 - Smoothers: Jacobi, Gauss-Seidel, l₁ Gauss-Seidel, multithreaded Gauss-Seidel, polynomial, ILU
 - Load balancing for good parallel performance
- Ongoing research
 - performance on next-generation architectures
 - AMG for multiphysics
 - Multigrid for coupled structured/unstructured problems
 - Algorithm selection via machine learning

www.trilinos.org


```
Hands-on: Algebraic Multigrid
Go to https://xsdk-project.github.io/MathPackagesTraining2020/
lessons/krylov_amg_muelu/
#set-3---krylov-solver-multigrid-preconditioner
Sets 3
20 mins
```

Next generation architectures and applications

Optimizing Multigrid Setup for Structured Grids

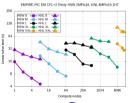
- Exploit mesh structure to speed up multigrid setup & solve.
- Stay as "algebraic" as possible.

Multigrid for Maxwell's equations

- Full Maxwell system
- Coupling with particle code
- Target architectures: Haswell, KNL, GPU
- Largest problem to date: ~34B unknowns

Multigrid for low Mach CFD

- Critical component in wind turbine simulations
- Two linear solves:
 - Momentum: GMRES/symmetric Gauss-Seidel
 - Pressure: GMRES/AMG



Take away messages

- CG works for spd matrix and preconditioner. GMRES works for unsymmetric systems, but requires more memory.
- Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solve.
- Multigrid can lead to a constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?

We are always looking for motivated

- summer students (LINK),
- postdocs (LINK).

Please contact us!