
Argonne Training Program
on Extreme-Scale Computing

ATPESC 2021

Krylov Solvers and Algebraic Multigrid with hypre

Sarah Osborn, Ulrike Meier Yang
Lawrence Livermore National Laboratory

August 1-13, 2021

2

Outline

• What are Krylov Solvers?

• Why are they used?

• Why multigrid methods?

• Algebraic multigrid software

• Hypre software library – interfaces

– Why different interfaces?

• How does multigrid work?

• Unstructured vs structured multigrid solvers

3

Iterative Solvers

• Solve linear system 𝐴𝑥 = 𝑏,

where 𝐴 is a large sparse matrix of size n

• Direct solvers (e.g., Gaussian elimination) too expensive

• Iterative solvers

• Richardson iteration:

𝑥𝑛+1 = 𝑥𝑛 + 𝑏 − 𝐴𝑥𝑛

𝑒𝑛+1 = (𝐼 − 𝐴)𝑒𝑛

• Introduce a preconditioner 𝐵:

𝑥𝑛+1 = 𝑥𝑛 + 𝐵 𝑏 − 𝐴𝑥𝑛

𝑒𝑛+1 = (𝐼 − 𝐵𝐴)𝑒𝑛

• Jacobi: 𝐵 = 𝐷−1 ; Richardson: 𝐵 = λ𝐼

4

Generalized Minimal Residual (GMRES)

• 𝑥𝑛+1 = 𝑥𝑛 + 𝐵 𝑏 − 𝐴𝑥𝑛

• ⇒ 𝑥𝑛+1 = σ𝑖=0
𝑛 α𝑖(𝐵𝐴)

𝑖𝐵𝑏

• 𝑥𝑛+1 ∈ 𝐾𝑛 = 𝑠𝑝𝑎𝑛{𝐵𝑏, 𝐵𝐴 𝐵𝑏, (𝐵𝐴)2𝐵𝑏,… , (𝐵𝐴)𝑛𝐵𝑏}
Krylov space

• Now optimize by defining 𝑥𝑛+1 through
min

𝑥𝑛+1∈𝐾𝑛
𝐵(𝐴𝑥𝑛+1 − 𝑏)

• Construct a new basis for 𝐾𝑛 through orthonormalization

{𝑞0 =
𝐵𝑏

𝐵𝑏
, 𝑞1, … , 𝑞𝑛}

• Solve the minimization in the new basis

• 𝑞𝑖 also called search directions

5

Some comments on GMRES

• GMRES consists of fairly simple operations:

– Inner products and norms (global reductions)

– Vector updates (embarrassingly parallel)

– Matvecs (nearest neighbor updates)

– Application of preconditioner (can be very complicated)

• Often used restarted as GMRES(k), i.e., after k iterations throw out

𝑞𝑖 and start again using latest approximation

• Many variants to reduce and/or overlap communication

(pipelined GMRES, etc)

6

Other Krylov solvers

• Conjugate Gradient (CG)

– For symmetric positive definite matrices

– Possesses like GMRES an orthogonality property

– Uses a three-term recurrence

– Requires only two inner products and a norm per iteration

• BiCGSTAB (Biconjugate Gradient Stabilized)

– Like CG uses a three-term recurrence relation

– No orthogonality property, can break down

– Requires several inner products and a norm at each iteration (and
two matvecs)

– More erratic convergence than GMRES, but needs generally less
memory

7

Hands-on Exercises: Krylov methods

• Go to https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_hypre/

• Poisson equation: −∆𝜑 = RHS

with Dirichlet boundary conditions 𝜑 = 0

• Grid: cube

• Finite difference discretization:

– Central differences for diffusion term

– 7-point stencil

https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_hypre/

8

Multigrid linear solvers are optimal (O(N) operations), and hence have
good scaling potential

• Weak scaling – want constant solution time as problem size grows in

proportion to the number of processors

Number of Processors (Problem Size)
1061

10

4000

T
im

e
 t
o

 S
o

lu
ti
o

n

Diag-CG

Multigrid-CG
scalable

9

Multigrid software

• ML, MueLu included in

• GAMG in

• The library provides various algebraic multigrid solvers,

including multigrid solvers for special problems e.g., Maxwell

equations, …

• …

• All of these provide different flavors of multigrid and provide

excellent performance for suitable problems

• Focus here on

10

(Conceptual) linear system interfaces are necessary to provide “best”
solvers and data layouts

Data Layouts

structured composite block-struc unstruc CSR

Linear Solvers

PFMG, ... FAC, ... Split, ... MLI, ... AMG, ...

Linear System Interfaces

11

Why multiple interfaces? The key points

• Provides natural “views” of the linear system

• Eases some of the coding burden for users by eliminating
the need to map to rows/columns

• Provides for more efficient (scalable) linear solvers

• Provides for more effective data storage schemes and more
efficient computational kernels

12

hypre supports these system interfaces

• Structured-Grid (Struct)
– logically rectangular grids

• Semi-Structured-Grid (SStruct)
– grids that are mostly structured

– Examples: block-structured grids,

structured adaptive mesh refinement grids,

overset grids

– Finite elements

• Linear-Algebraic (IJ)
– general sparse linear systems

13

The software library provides structured and
unstructured multigrid solvers

▪ Used in many applications

▪ Displays excellent weak scaling

and parallelization properties on

BG/Q type architectures

Magneto-

hydrodynamics

Electro-

magnetics

Facial surgery

14

Multigrid (MG) uses a sequence of coarse grids to accelerate the
fine grid solution

Error on the fine grid

Error approximated on

a smaller coarse grid

restriction

prolongation

(interpolation)

Multigrid

V-cycle

smoothing

(relaxation)

Algebraic multigrid

(AMG) only uses

matrix coefficients

No actual grids!

15

– Select coarse “grids”

– Define interpolation:

– Define restriction:

– Define coarse-grid operators:

Galerkin product

AMG Building Blocks

Setup Phase:

Solve Phase:

mm(m) fuARelax =
mm(m) fuARelax =

1m(m)m ePe eInterpolat +=

m(m)mm uAfr Compute −= mmm euu Correct +

1m1m1)(m reA

Solve

+++ =

m(m)1m rRr Restrict =+

1,2,...m ,P(m) =

(m)(m)(m)1)(m PARA =+

T(m)(m)(m))(PR often 1,2,...m ,R == ,

16

BoomerAMG is an algebraic multigrid method for unstructured
grids

• Interface: SStruct, IJ

• Matrix Class: ParCSR

• Originally developed as a general matrix method (i.e.,

assumes given only A, x, and b)

• Various coarsening, interpolation and relaxation schemes

• Automatically coarsens “grids”

• Can solve systems of PDEs if additional information is

provided

• Can also be used through PETSc and Trilinos

• Can now also be used on GPUs (CUDA, HIP)

17

Complexity issues
• Coarse-grid selection in

AMG can produce unwanted
side effects

• Operator (RAP) “stencil growth”
reduces efficiency

• For BoomerAMG, we will
also consider complexities:

– Operator complexity:
𝐶𝑜𝑝 = (σ𝑖=0

𝐿 𝑛𝑛𝑧 (𝐴𝑖))/𝑛𝑛𝑧(𝐴0)

– Affects flops and memory

– Generally, would like 𝐶𝑜𝑝 < 2, close to 1

• Can control complexities in various ways

– varying strength threshold

– more aggressive coarsening

– Operator sparsification (interpolation truncation, non-Galerkin approach)

• Needs to be done carefully to avoid excessive convergence deterioration

18

ParCSRMatrix data structure

• Based on compressed sparse row
(CSR) data structure

• Consists of two CSR matrices:

– One containing local coefficients
connecting to local column indices

– The other (Offd) containing coefficients with column indices pointing
to off processor rows

• Also contains a mapping between local and global column
indices for Offd

• Requires much indirect addressing, integer computations,
and computations of relationships between processes etc,

A =

Proc 0

Proc 1

Proc p

19

SMG and PFMG are semicoarsening multigrid methods for structured
grids

• Interface: Struct

• Matrix Class: Struct

• SMG uses plane smoothing in 3D, where each plane

“solve” is affected by one 2D V-cycle

• SMG is very robust

• PFMG uses simple pointwise smoothing, and is less

robust

• Note that stencil growth is limited for SMG and

PFMG (to at most 27 points per stencil in 3D)

• Constant-coefficient versions

• Can be used on GPUs (CUDA, HIP, RAJA, Kokkos)

20

PFMG is an algebraic multigrid method for structured grids

• Matrix defined in terms of
grids and stencils

• Uses semicoarsening

• Simple 2-point interpolation
→ limits stencil growth to at most 9pt (2D), 27pt (3D)

• Optional non-Galerkin approach (Ashby, Falgout), uses
geometric knowledge, preserves stencil size

• Pointwise smoothing

• Highly efficient for suitable problems

21

Structured-Grid System Interface
(Struct)

• Appropriate for scalar applications on structured grids with a fixed stencil pattern

• Grids are described via a global d-dimensional index space (singles in 1D, tuples
in 2D, and triples in 3D)

• A box is a collection of cell-centered indices, described by its “lower” and “upper”
corners

• The grid is a collection of boxes

• Matrix coefficients are defined via
stencils

(-3,2)

(6,11)

(7,3)
(15,8)

Index Space

S0

S4

S3

S2S1 4

-1

-1

-1-1=

22

• Stencil

• Grid boxes: [(-3,1), (-1,2)] [(0,1), (2,4)]

• Data Space: grid boxes + ghost layers:
[(-4,0), (0,3)] , [(-1,0), (3,5)]

• Data stored

• Operations applied to stencil entries per box (corresponds to matrix
(off) diagonals from a matrix point of view)

StructMatrix data structure

S0

S4

S3

S2S1 4

-1

-1

-1-1=

(-3,1)

(-1,2)

(0,1)

(2,4)

(-4,0)

(0,3)

(-1,0)

(3,5)

S4S0 S1 S2 S3 S4 S0 S1 S2 S3

23

Algebraic multigrid as preconditioner

• Generally algebraic multigrid methods are used as preconditioners

to Krylov methods, such as conjugate gradient (CG) or GMRES

• This often leads to additional performance improvements

0.5

1

2

4

8

16

32

s
e

c
o

n
d

s

No of cores

PFMG_opt AMG_opt PCG

Classic porous media diffusion problem:
−∇ ∙ 𝜅∇u = f

with κ having jumps of 2-3 orders of magnitude

Weak scaling: 32x32x32 grid points per core,
BG/Q

24

Structured multigrid methods perform significantly better than

unstructured ones on CPUs and - even more - on GPUs

0

1

2

3

4

5

6

7

8

9

50 100 150 200

S
e

c
o

n
d

s

n

.MG-PCG applied to a 7pt 3D Laplace problem using n x n x n grid
points per GPU

AMG PFMG AMG-CPU PFMG-CPU

Speedup

GPU/CPU

6.0

Speedup

GPU/CPU

2.8 CPU Speedup
PFMG/AMG

4.2

GPU Speedup
PFMG/AMG

8.9

25

Hands-on Exercises: Algebraic multigrid methods

• Go to https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_hypre/

• Poisson equation: −∆𝜑 = RHS

with Dirichlet boundary conditions 𝜑 = 0

• Grid: cube

• Finite difference discretization:

– Central differences for diffusion term

– 7-point stencil

https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_hypre/

Thank you!

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither

the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any

warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National

Laboratory under contract DE-AC52-07NA27344. Lawrence

Livermore National Security, LLC.

This work was supported by the U.S. Department of Energy

Office of Science, Office of Advanced Scientific Computing

Research (ASCR), Scientific Discovery through Advanced

Computing (SciDAC) program, and by the Exascale Computing

Project, a collaborative effort of the U.S. Department of Energy

Office of Science and the National Nuclear Security

Administration.

