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Outline

• What are Krylov Solvers?

• Why are they used?

• Why multigrid methods?

• Algebraic multigrid software

• Hypre software library – interfaces 

– Why different interfaces?

• How does multigrid work?

• Unstructured vs structured multigrid solvers
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Iterative Solvers

• Solve linear system 𝐴𝑥 = 𝑏,

where 𝐴 is a large sparse matrix of size n

• Direct solvers (e.g., Gaussian elimination) too expensive

• Iterative solvers

• Richardson iteration: 

𝑥𝑛+1 = 𝑥𝑛 + 𝑏 − 𝐴𝑥𝑛

𝑒𝑛+1 = (𝐼 − 𝐴)𝑒𝑛

• Introduce a preconditioner 𝐵:

𝑥𝑛+1 = 𝑥𝑛 + 𝐵 𝑏 − 𝐴𝑥𝑛

𝑒𝑛+1 = (𝐼 − 𝐵𝐴)𝑒𝑛

• Jacobi: 𝐵 = 𝐷−1 ;   Richardson: 𝐵 = λ𝐼
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Generalized Minimal Residual (GMRES)

• 𝑥𝑛+1 = 𝑥𝑛 + 𝐵 𝑏 − 𝐴𝑥𝑛

• ⇒ 𝑥𝑛+1 = σ𝑖=0
𝑛 α𝑖(𝐵𝐴)

𝑖𝐵𝑏

• 𝑥𝑛+1 ∈ 𝐾𝑛 = 𝑠𝑝𝑎𝑛{𝐵𝑏, 𝐵𝐴 𝐵𝑏, (𝐵𝐴)2𝐵𝑏,… , (𝐵𝐴)𝑛𝐵𝑏}
Krylov space

• Now optimize by defining 𝑥𝑛+1 through
min

𝑥𝑛+1∈𝐾𝑛
𝐵(𝐴𝑥𝑛+1 − 𝑏)

• Construct a new basis for 𝐾𝑛 through orthonormalization 

{𝑞0 =
𝐵𝑏

𝐵𝑏
, 𝑞1, … , 𝑞𝑛}

• Solve the minimization in the new basis

• 𝑞𝑖 also called search directions
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Some comments on GMRES

• GMRES consists of fairly simple operations:

– Inner products and norms (global reductions)

– Vector updates (embarrassingly parallel)

– Matvecs (nearest neighbor updates)

– Application of preconditioner (can be very complicated)

• Often used restarted as GMRES(k), i.e., after k iterations throw out 

𝑞𝑖 and start again using latest approximation

• Many variants to reduce and/or overlap communication 

(pipelined GMRES, etc)
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Other Krylov solvers

• Conjugate Gradient (CG)

– For symmetric positive definite matrices

– Possesses like GMRES an orthogonality property

– Uses a three-term recurrence

– Requires only two inner products and a norm per iteration

• BiCGSTAB (Biconjugate Gradient Stabilized)

– Like CG uses a three-term recurrence relation

– No orthogonality property, can break down

– Requires several inner products and a norm at each iteration (and 
two matvecs)

– More erratic convergence than GMRES, but needs generally less 
memory
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Hands-on Exercises: Krylov methods

• Go to https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_hypre/

• Poisson equation:   −∆𝜑 = RHS 

with Dirichlet boundary conditions 𝜑 = 0

• Grid: cube

• Finite difference discretization:

– Central differences for diffusion term

– 7-point stencil

https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_hypre/
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Multigrid linear solvers are optimal (O(N) operations), and hence have 
good scaling potential

• Weak scaling – want constant solution time as problem size grows in 

proportion to the number of processors
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Multigrid software 

• ML, MueLu included in

• GAMG in 

• The               library provides various algebraic multigrid solvers, 

including multigrid solvers for special problems e.g., Maxwell 

equations, …

• …

• All of these provide different flavors of multigrid and provide 

excellent performance for suitable problems

• Focus here on 
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(Conceptual) linear system interfaces are necessary to provide “best” 
solvers and data layouts

Data Layouts

structured composite block-struc unstruc CSR

Linear Solvers

PFMG, ... FAC, ... Split, ... MLI, ... AMG, ...

Linear System Interfaces
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Why multiple interfaces?  The key points

• Provides natural “views” of the linear system

• Eases some of the coding burden for users by eliminating 
the need to map to rows/columns 

• Provides for more efficient (scalable) linear solvers

• Provides for more effective data storage schemes and more 
efficient computational kernels 
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hypre supports these system interfaces

• Structured-Grid (Struct)
– logically rectangular grids

• Semi-Structured-Grid (SStruct)
– grids that are mostly structured

– Examples: block-structured grids, 

structured adaptive mesh refinement grids, 

overset grids

– Finite elements

• Linear-Algebraic (IJ)
– general sparse linear systems
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The                software library provides structured and 
unstructured multigrid solvers

▪ Used in many applications

▪ Displays excellent weak scaling 

and parallelization properties on 

BG/Q type architectures

Magneto-

hydrodynamics

Electro-

magnetics

Facial surgery
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Multigrid (MG) uses a sequence of coarse grids to accelerate the 
fine grid solution

Error on the fine grid

Error approximated on 

a smaller coarse grid

restriction

prolongation

(interpolation)

Multigrid

V-cycle

smoothing

(relaxation)

Algebraic multigrid

(AMG) only uses 

matrix coefficients

No actual grids!
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– Select coarse “grids” 

– Define interpolation:

– Define restriction:

– Define coarse-grid operators:

Galerkin product 

AMG Building Blocks

Setup Phase:

Solve Phase:

mm(m) fuARelax =
mm(m) fuARelax =

1m(m)m ePe   eInterpolat +=

m(m)mm uAfr  Compute −= mmm euu     Correct +

1m1m1)(m reA

Solve        

+++ =

m(m)1m rRr  Restrict =+

1,2,...m   ,P(m) =

(m)(m)(m)1)(m PARA =+

T(m)(m)(m) )(PR  often   1,2,...m   ,R == ,
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BoomerAMG is an algebraic multigrid method for unstructured 
grids

• Interface: SStruct, IJ

• Matrix Class: ParCSR

• Originally developed as a general matrix method (i.e., 

assumes given only A, x, and b)

• Various coarsening, interpolation and relaxation schemes 

• Automatically coarsens “grids”

• Can solve systems of PDEs if additional information is 

provided

• Can also be used through PETSc and Trilinos

• Can now also be used on GPUs (CUDA, HIP)
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Complexity issues
• Coarse-grid selection in 

AMG can produce unwanted 
side effects

• Operator (RAP) “stencil growth” 
reduces efficiency

• For BoomerAMG, we will 
also consider complexities:

– Operator complexity:
𝐶𝑜𝑝 = (σ𝑖=0

𝐿 𝑛𝑛𝑧 (𝐴𝑖))/𝑛𝑛𝑧(𝐴0)

– Affects flops and memory

– Generally, would like 𝐶𝑜𝑝 < 2, close to 1

• Can control complexities in various ways

– varying strength threshold

– more aggressive coarsening

– Operator sparsification (interpolation truncation, non-Galerkin approach)

• Needs to be done carefully to avoid excessive convergence deterioration
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ParCSRMatrix data structure

• Based on compressed sparse row 
(CSR) data structure

• Consists of two CSR matrices:

– One containing local coefficients 
connecting to local column indices

– The other (Offd) containing coefficients with column indices pointing 
to off processor rows

• Also contains a mapping between local and global column 
indices for Offd

• Requires much indirect addressing, integer computations, 
and computations of relationships between processes etc, 

A =

Proc 0

Proc 1

Proc p
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SMG and PFMG are semicoarsening multigrid methods for structured 
grids

• Interface: Struct

• Matrix Class: Struct

• SMG uses plane smoothing in 3D, where each plane 

“solve” is affected by one 2D V-cycle

• SMG is very robust

• PFMG uses simple pointwise smoothing, and is less 

robust

• Note that stencil growth is limited for SMG and 

PFMG (to at most 27 points per stencil in 3D)

• Constant-coefficient versions

• Can be used on GPUs (CUDA, HIP, RAJA, Kokkos)
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PFMG is an algebraic multigrid method for structured grids

• Matrix defined in terms of
grids and stencils

• Uses semicoarsening

• Simple 2-point interpolation
→ limits stencil growth to at most 9pt (2D), 27pt (3D)

• Optional non-Galerkin approach (Ashby, Falgout), uses 
geometric knowledge, preserves stencil size 

• Pointwise smoothing

• Highly efficient for suitable problems
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Structured-Grid System Interface
(Struct)

• Appropriate for scalar applications on structured grids with a fixed stencil pattern

• Grids are described via a global d-dimensional index space (singles in 1D, tuples 
in 2D, and triples in 3D)

• A box is a collection of cell-centered indices, described by its “lower” and “upper” 
corners

• The grid is a collection of boxes

• Matrix coefficients are defined via
stencils

(-3,2)

(6,11)

(7,3)
(15,8)

Index Space

S0

S4

S3

S2S1 4

-1

-1

-1-1=
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• Stencil

• Grid boxes: [(-3,1), (-1,2)] [(0,1), (2,4)]                              

• Data Space: grid boxes + ghost layers:
[(-4,0), (0,3)] , [(-1,0), (3,5)]

• Data stored 

• Operations applied to stencil entries per box (corresponds to matrix 
(off) diagonals from a matrix point of view)

StructMatrix data structure

S0

S4

S3

S2S1 4

-1

-1

-1-1=

(-3,1)

(-1,2)

(0,1)

(2,4)

(-4,0)

(0,3)

(-1,0)

(3,5)

S4S0 S1 S2 S3 S4 S0 S1 S2 S3
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Algebraic multigrid as preconditioner

• Generally algebraic multigrid methods are used as preconditioners 

to Krylov methods, such as conjugate gradient (CG) or GMRES

• This often leads to additional performance improvements
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Structured multigrid methods perform significantly better than 

unstructured ones on CPUs and - even more - on GPUs
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Hands-on Exercises: Algebraic multigrid methods

• Go to  https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_hypre/

• Poisson equation:   −∆𝜑 = RHS 

with Dirichlet boundary conditions 𝜑 = 0

• Grid: cube

• Finite difference discretization:

– Central differences for diffusion term

– 7-point stencil

https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_hypre/


Thank you!
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