Sandia
Exceptional service in the national interest m National
Laboratories

Krylov Solvers and Preconditioning

Christian Glusa, Graham Harper, and Peter Ohm {caglusa,gbharpe,pohm}@sandia.gov

Presented to ATPESC 2021 Participants
August 10, 2021
Saneta Natona Laboratris is o mulinisionlaboratoy mariaged and pera by National Tectlogy and Engineeing Soluions of Sandis LLO. a whol auned

subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NAQ003525. SAND NO.
SAND2019-9176 PE

©ENERGY NISA

1/16

Sandia
Discretization of partial differential equations gives rise to large linear systems of equations (=
A% = b,

where A is sparse, i.e. only a few non-zero entries per row.

Example
2D Poisson equation: Central finite differences on a uniform mesh {x; ;}:
—Au=fin Q=01 Aujj = i jp1 = Uijo1 = U1 — uie1y = Fx)Ax®if xi & 00,
u =0 on 09. ujj=0 if x;;j € 0Q.

— 5 entries or less per row of A.

Instead of dense format, keep matrix A in a sparse format e.g. compressed sparse row (CSR):

rovptr — (ENNZNNE 5)
[N~
indicos = (NEEONENNRY)
vatues — (EEEEESRES])

2/16

Available solvers (="
Solve

A% = b.

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li, and Peter Ghysels 10:30 AM
& 11:45 AM & 3:40 PM CDT

m Factorisation scales as O(n?).
m Factors are a lot denser than A — memory cost.
m Parallel implementation not straightforward.

m Does not require a lot of information about the structure of A.

Observation

A has O(n) non-zero entries. — Optimal complexity for a solve is O(n) operations.

Option 2: lterative solvers
m Exploit an operation that has O(n) complexity: mat-vec.
m Easy to parallelize.

m Can have small memory footprint. (In the best case, we only need to keep a single vector.)

Generally more restrictions on structure of A.

3/16

Q)=

Available solvers
Solve

A has O(n) non-zero entries. — Optimal complexity for a solve is O(n) operations.

Option 2: lterative solvers
m Exploit an operation that has O(n) complexity: mat-vec.
m Easy to parallelize.
m Can have small memory footprint. (In the best case, we only need to keep a single vector.)
m Generally more restrictions on structure of A.

3/16

Krylov methods (D=

Based on mat-vecs, we can compute

79 = x0 (“initial guess”’)
}—/‘k-‘rl — }—/'k 4 <B_ A}—/‘k)
[
“residual”

and recombine in some smart way to obtain an approximate solution

K
oK =k
X" = E agy”.
k=0

Expressions for ay typically involve inner products between vectors in the so-called Krylov space
span {)7’(} = {X_E), AXO A2R0 A3R0 .. }
m Keeping the entire Krylov space can be quite expensive.
m Computing inner products involves an all-reduce which can be costly at large scale.
Two particular Krylov methods:
m Conjugate gradient (CG) m Generalized Minimum Residual (GMRES,

m Use a short recurrence, i.e. does not keep the whole GMRES(K))
Krylov space around. m Works for unsymmetric systems.

. . - GMRES keeps the whole Krylov space around.
Provably works f t tive definite (spd - P yiov sp
" Arova y works for symmetric positive definite (spd) m GMRES(K) discards the Krylov space after K
’ iterations.

4/16

(f=

Convergence of Krylov methods
CG convergence result:

|7 -=| < (- 1/\/K(A))K =0 = %||,
where k(A) is the condition number of A:
K(A) = |A][A7].

A common theme with Krylov methods:
Kk measures how hard it is to solve the system, i.e. how many iterations are required to reach a given tolerance.

Reduce the condition number (" Preconditioning”).

Instead of solving

solve

PAX = Pb or AP

NL
Il

o
X1
Il
R
NL

with preconditioner P so that x(PA) < r(A).

Two requirements that must be balanced:
m Multiplication with P should be comparable in cost to A.
m P AL

5/16

(f=

Some simple preconditioners

m Jacobi: P = D™!, where D is the diagonal of A.
m Gauss-Seidel: P = (D + L)1, where L is the lower or upper triangular part of A.
m Polynomial preconditioners: P = p(A), where p is some carefully chosen polynomial.

m Incomplete factorizations such as ILU or Incomplete Cholesky.

6/16

Krylov methods and preconditioners: Packages in the Trilinos project @

www.trilinos.org

Belos - iterative linear solvers

m Standard methods:
m Conjugate Gradients (CG), Generalized Minimal
Residual (GMRES)
= TFQMR, BiCGStab, MINRES, Richardson /
fixed-point
m Advanced methods:
m Block GMRES, block CG/BiCG
m Hybrid GMRES, CGRODR (block recycling GMRES)
m TSQR (tall skinny QR), LSQR
m Ongoing research:

m Communication avoiding methods
m Pipelined and s-step methods

Sanda
Natonal

m Support for hybrid (MPI+X) parallelism, X € {OpenMP, CUDA, ...}

m C++, open source, primarily developed at Sandia

Ifpack?2 - single-level solvers and preconditioners

m incomplete factorisations

ILUT
RILU(k)

m relaxation preconditioners

Jacobi

Gauss-Seidel (and a multithreaded variant)
Successive Over-Relaxation (SOR)
Symmetric versions of Gauss-Seidel and SOR
Chebyshev

m additive Schwarz domain decomposition

7/16

www.trilinos.org

Hands-on: Krylov methods and preconditioning
Go to https://xsdk-project.github.io/MathPackagesTraining2021/

lessons/krylov_amg muelu/
Sets 1 and 2
20 mins

8/16

https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_muelu/
https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_muelu/

The motivation for Multigrid methods i
Convergence of Jacobi:

High frequency error is damped quickly, low frequency error slowly

Iteration 0 Iteration 5

Iteration 10

9/16

The motivation for Multigrid methods
Convergence of Jacobi:
Local transmission of information cannot result in a scalable method

Iteration 5

Iteration 10

e

ia
Natonal
Laboratories

10/16

Multigrid ()=

® Main idea: accelerate solution of AX = b by using "hierarchy” of coarser
problems

m Remove high-frequency error on fine mesh, where application matrix lives
(using Jacobi or another cheap preconditioner),

m Move to coarser mesh
B Remove high-frequency error on coarser mesh by solving residual equation

m Move to coarser mesh

m Solve a small problem on a very coarse mesh.
m Move back up.
Repeat.

m Geometric multigrid requires coarse mesh information.

m Algebraic multigrid constructs coarser matrices on the fly based on fine-level matrix entries.

11/16

Software packages for Algebraic Multigrid @

m Classical AMG (hypre)
Developed at Lawrence Livermore National Lab, presentation by Ulrike Yang, 10:30 AM & 2:35 PM CDT.

/1vere-

m Smoothed Aggregation Multigrid (PETSc)
Developed by Mark Adams and the PETSc team.

m Smoothed Aggregation Multigrid (Trilinos)
Two multigrid packages in Trilinos:
= ML
C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)
m Muelu
Templated C++ library with support for 2B+ unknows and next-generation architectures (OpenMP, CUDA, ..)

12/16

The MuelLu package @E.

m Algebraic Multigrid package in Trilinos
Templated C++ library with support for 2B+ unknowns and
next-generation architectures (OpenMP, CUDA, ..)

m Robust, scalable, portable AMG preconditioning is critical for many
large-scale simulations
m Multifluid plasma simulations
m Shock physics
m Magneto-hydrodynamics (MHD)
m Low Mach computational fluid dynamics (CFD)
m Capabilities
m Aggregation-based and structured coarsening
m Smoothers: Jacobi, Gauss-Seidel, ¢1 Gauss-Seidel, multithreaded Gauss-Seidel,
polynomial, ILU
m Load balancing for good parallel performance

m Ongoing research
performance on next-generation architectures www.trilinos.org
AMG for multiphysics

Multigrid for coupled structured/unstructured problems

[]
[]
[]
m Algorithm selection via machine learning

13/16

www.trilinos.org

Hands-on: Algebraic Multigrid
Go to https://xsdk-project.github.io/MathPackagesTraining2021/
lessons/krylov_amg muelu/

Set 3
20 mins

14/16

https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_muelu/
https://xsdk-project.github.io/MathPackagesTraining2021/lessons/krylov_amg_muelu/

Next generation architectures and applications

Optimizing Multigrid Setup for

Structured Grids

Multigrid for Maxwell’'s equa-
tions

Sanda
Natonal
Laboratories

Muiltigrid for low Mach CFD

m Critical component in wind
turbine simulations

m Exploit mesh structure to m Full Maxwell system

speed up multigrid setup & m Coupling with particle code
solve. m Two linear solves:

m Stay as “algebraic” as
possible.

m Target architectures:
Haswell, KNL, GPU

m Largest problem to date:
~34B unknowns

® Momentum:
GMRES /symmetric
Gauss-Seidel

m Pressure: GMRES/AMG

EMPIRE-PIC EM CFL=3 Trnity HSW 2MPIXL0, KNL &MPIX16 1HT

6 6 12 ax
Compute nodes

15/16

Take away messages ()=

m CG works for spd matrix and preconditioner. GMRES works for unsymmetric systems, but requires more
memory.

m Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solve.

m Multigrid can lead to a constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?

We are always looking for motivated
m summer students (LINK),
m postdocs (LINK).

Please contact us!

16/16

https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/summerprog.cfm
https://cg.sandia.gov/psp/applicant/EMPLOYEE/HRMS/c/HRS_HRAM_FL.HRS_CG_SEARCH_FL.GBL?Page=HRS_APP_JBPST_FL&Action=U&FOCUS=Applicant&SiteId=1&JobOpeningId=672078&PostingSeq=1

