Time Integration
(with hands-on examples using SUNDIALS)

Presented to

ATPESC 2021 Participants

Daniel R. Reynolds
Professor, SMU
SUNDIALS Team Member, ARKODE Lead Developer

Date 08/10/2021

T OF

R U.S. DEPARTMEN

S B

g 3

«Y/ENERGY
BT

cCP

EXASCALE COMPUTING PROJECT

Office of
Science

ATPESC Numerical Software Track

Argonne &

NATIONAL LABORATORY

i) Rt Rensselaer SMU

Time integrators in the HPC “landscape”

du
Most models of physical systems are formulated in terms of the rate of change of some variable, e.g. e
— Newton’s 2" |aw: f=ma = d_V — i
dt m
. . d|P]
— Chemical rate equations: A+B—-P = 5 k(T)[A]|B]

= Time integrators are used to track changes in solutions as time proceeds, allowing studies of the
‘evolution’ of a model.

"Sawtooth” reconnection in a tokamak (NIMROD)

2 ATPESC 2021, August 1-13, 2021

Time integrators in the HPC “landscape”

Unlike spatial discretization or visualization that live at the bottom/top of the software stack,
respectively, time integrators typically live in the “middle.” Consider some PDE systems,

Op+ V- (pu)=0

atquu-Vqu@:g 8tu+u-Vu—VV2u:—V(p£>+g
0 0
8te+u-Ve—|—]—?V-u:O V-u=0

P

= Using a “method of lines” approach, after spatial discretization, one considers the resulting
ODE/DAE system:

y — f(ta y)a y(tO) = Yo F(ta Y, y) — 07 y(t()) = Yo, y(tO) — yO

— y contains all discretized solution components; for F encodes the physics & spatial
discretization

3 ATPESC 2021, August 1-13, 2021

Time integrator overview

= Let y, =~ y(tn), the1 =t, + Aty . Then mstead of requiring the solution at all time values, we only
compute the solution at the finite set of times {tn}

= A“time marching” scheme computes these time-evolved solutions using a prescribed update formula:
Yn+1 = P(Aln, Ynt1,Yns - - -)

e.g., explicit Euler, Yn+1 = Yn + Aty f(tn,yn), and implicit Euler, Yn+1 = Yn + Aty f(tnt1, Ynt1)

= Time integrator types (explicit, implicit, IMEX):
— If ® depends on y,,+1 then the method is implicit, and requires a nonlinear solve of the form

— If & does not depend on y,,+1 then the method is explicit, in that the updated solution may be
explicitly constructed using known data.

— Implicit-explicit (IMEX) methods arise when only some parts of ® depend on Yn+1.

— Multirate methods use different time step sizes At,, > 0t,, to evolve separate problem components.

4 ATPESC 2021, August 1-13, 2021

Time integrator overview (continued)

= Time integration methods have multiple mechanisms for achieving higher accuracy:
— “One-step” methods use multiple internal stages per step [Runge-Kutta, Rosenbrock].

— “Multistep” methods retain a longer history of previous solutions [Adams-Bashforth, BDF].

= Linear stability: a method is numerically stable if for a desired At,,, floating-point roundoff error stays
“controlled” throughout the simulation (vs growing out of control). For a brief refresher, see here.

— An “A-stable” method is linearly stable no matter the At,, that is used. This is only possible with
implicit methods.

— Non-A-stable methods have a maximum stable step size At,, for any given problem (in PDEs, this is
frequently given by the CFL condition, wherein At,, oc Az or At,, o Az?).

— Stability # accuracy — just because a solution does not blow up, it is not necessarily accurate.

“Exponential” methods are explicit and may be A-stable, but require significantly more work per-step
than traditional explicit methods. | know of no open-source HPC library that currently provides these.

5 ATPESC 2021, August 1-13, 2021

Choosing between explicit and implicit methods

Explicit Methods Implicit Methods

+ easy to conceptualize + less/nonexistent stability limits

+ easy to code + steps over fastest dynamics

+ no algebraic solvers required - requires algebraic solvers

— stability limits on step sizes - solvers generally couple all solution unknowns
— tracks fastest dynamics - increased code complexity

= IMEX: a bit of both — one chooses the splitting to balance ‘cheaper’ algebraic solvers and stability.

= “Stiffness” helps us choose: “The stepsize needed to maintain stability of the forward Euler method is
much smaller than that required to represent the solution accurately.” (Ascher and Petzold, 1998)

— Depends on Jacobian eigenvalues, system dimension, accuracy requirements, length of simulation.
— For stability, stiff problems generally require implicit or IMEX methods, with robust implicit solvers.

= DAESs nearly always require implicit methods to maintain stability due to the algebraic constraint.

= Multirate methods may be preferable if the ‘slow’ operator is much more costly than the ‘fast’.

6 ATPESC 2021, August 1-13, 2021

Adaptive time-step selection

= Stability alone should never dictate the time steps used in an application.

= Given a maximum stable step size, adaptive methods select At,, to obtain a desired solution
accuracy:

— At each internal step, computes both the solution and an estimate of the error introduced
in that step.

— If that local truncation error is small enough the step is accepted; otherwise a new step
size is chosen that should provide sufficient accuracy, and the step is recomputed.

— Advanced “error controllers” adapt these step sizes to meet a variety of objectives:
- minimize failed steps
« maximize step sizes
« maintain smooth transitions in the step sizes as integration proceeds

= Temporal adaptivity can lead to much more efficient (and accurate) results.

7 ATPESC 2021, August 1-13, 2021

“Solving” Initial-Value Problems with SUNDIALS

= SUNDIALS’ integrators consider initial-value problems of a variety of types:

— Standard IVP [CVODE]: y(t) = f(t,y(®)), y(to) =yo

— Linearly-implicit, split [ARKODE]: M(t) y(t) = f1(t,y(t)) + fa(t,y(t)), y(to) = yo
— Multirate [ARKODE/MRIStep]: 2t y) + fS(t v), y(to) = o

— Differential-algebraic form [IDA]: (y(t),5(t)) = y(to) = v0, U(to) = 7o

= By “solve” we adapt time steps (and/or method order) to meet user-specified tolerances:

1 N error 2] 1/

k
— <1
[N kz_:l (rtol | + atolk>]

—error € RY is the estimated temporal error in the time step

— y € RY is the previous time-step solution

— rtol € R encodes the desired relative solution accuracy (number of significant digits)
— atol € RY is the ‘noise’ level for any solution component (protects against y. = 0)

8 ATPESC 2021, August 1-13, 2021

Other DOE Time Integration Packages

= PETSc’s TS module provides a unified interface for implicit, explicit, & IMEX ODEs and DAEs:

F(ta Y, y) — G(t7 y)? y(tO) = Yo
— F(zy,y’) — stiff portion; G(t,y) — nonstiff portion

= Trilinos includes both an older Rythmos module for ODEs and DAEs:
F(t,y(t),y(t) =0, y(to) =y, ¥(to) =0
As well as a newer Tempus module for ODEs:
M(t,y)y(t) = G(t,y) + F(¢,y), y(to) = yo
Myt)+Cyt)+ Ky)+ FE) =0, y(o) = vo, y(to) = Yo

— Top: G(t,y) stiff, F(z,y) nonstiff, Bottom: Newmark integrators for second-order ODEs

= All perform temporal adaptivity and provide a rich set of algebraic solvers for implicit time
integration methods.

9 ATPESC 2021, August 1-13, 2021

Implicit methods require a nonlinear solver for F(x) =0

The PETSc team is presenting on nonlinear solvers in sessions parallel to this one, so I'll only
give a high-level idea, leaving details for them.

Nonlinear solvers must be iterative, since few nonlinear equations admit analytical solutions.
The two largest classes of nonlinear solvers are fixed-point vs Newton-based.
= FP typically use only F and converge linearly but may have a large domain of convergence.

= Newton uses both F and the Jacobian J(x) = 85—5{") (or an approx.):

— Each iteration requires a linear solve with the matrix J (see linear solvers talks this AM).

— Typically converge quadratically (or super-linearly, depending on how well J is solved).

— For most problems, Newton is algorithmically scalable — as the mesh is refined, the
number of iterations remains fixed, so scalability hinges on the linear system solver.

10 ATPESC 2021, August 1-13, 2021

10

Why use a solver library (instead of “rolling your own”)

= Many applications (particularly early in development) prefer complete control over the software stack and build
system, choosing to implement all numerical methods manually. While this can work, the resulting methods may be
overly simplistic (e.g., straight out of “Numerical Recipes”) or even buggy; or may not leverage modern hardware or
benefit from advanced “expert” features.

= Solver libraries, on the other hand, are typically bug-free, heavily tested, and admit numerous benefits:
— Time adaptivity (At,,) — provide approximate solutions of requested accuracy with minimal work.
— Seamless integration with scalable algebraic solver libraries for implicit and IMEX problems.
— Native support for cutting-edge GPU hardware via CUDA, HIP, oneAPI, Kokkos, Raja, ...

— Include advanced options for later use: temporal root-finding, forward/adjoint sensitivity analysis, globalization
options (nonlinear solvers), ...

= For more information:
— SUNDIALS: https://computing.linl.gov/projects/sundials
— PETSc: https://www.mcs.anl.gov/petsc/
— Trilinos: https://trilinos.github.io/

11 ATPESC 2021, August 1-13, 2021 11

https://computing.llnl.gov/projects/sundials
https://www.mcs.anl.gov/petsc/
https://trilinos.github.io/

Hands-on lessons

Switch over to web-based hands-on lesson instructions — webpage

Agenda:
1. Explicit time integration (HandsOn1l.exe)
2. Implicit / IMEX time integration (HandsOn2.exe)

3. Preconditioning (HandsOn3.exe)

12 ATPESC 2021, August 1-13, 2021

12

https://xsdk-project.github.io/MathPackagesTraining2021/lessons/time_integrators_sundials/

Take Away Messages

= SUNDIALS, PETSc, and Trilinos provide a wide variety of high quality, scalable ODE/DAE
integrators and nonlinear solvers.

= PDEs can be converted to ODEs/DAEs via spatial semi-discretization, and then solved using
ODE/DAE libraries.

= Stiffness is an important characteristic of ODEs and helps dictate which methods are appropriate
for any given problem.

= Adaptive time-stepping provides an inexpensive means to combine algorithmic efficiency and
solution quality.

= Scalability of implicit and IMEX methods hinges on selection of robust and scalable algebraic
solvers; while Newton methods can handle nonlinearities, robustness and scalability of the inner
linear solver is critical (and often problem-dependent).

13 ATPESC 2021, August 1-13, 2021 13

CASC

Center for Applied
Scientific Computing

B Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Linear Stability — A brief refresher

A fundamental question for any time integration method is how well it handles errors due to floating-point
roundoff. To this end, we consider the simple “Dahlquist” test problem:

y'(t) = My(t), y(0)=1

= Here, y corresponds to the normalized floating-point error, and \ to the largest eigenvalue of the
Jacobian of a prototypical ODE right-hand side function (assumed to satisfy R(\) < 0).

= The true solution to this problem is just y(t) = et which decays to zero as ¢ — 00, indicating that
roundoff errors should decay as the simulation proceeds.

= The numerical method, on the other hand, computes approximate solutions
Ynt1 = P(Atn, Ynt1,Yn,- - -)
that may (or may not) similarly satisfy the similar requirement that v, — 0 as n — oo.

= Generally, this decay in numerical roundoff error will only occur for specific values of AtA =z € C., We
therefore define the stability region foramethodas S = {2z € C: ®,(y,) — 0asn — oo}

15 ATPESC 2021, August 1-13, 2021

15

Linear Stability Example — Explicit Euler

Consider the explicit Euler method: Yn+1 = Yn + Atf(tn, yn)

For the Dahlquist test problem, this becomes

Ynt1 = Yn + AtAy, = (1 + AtN)y, = (1 + At)\)Qyn_l =...=(1+ At)\)”+1y0 = (1+ At)\)”H

which only decays to zero if |1 + AtA| < 1.

2.0 T T T

L:5F

Hence the explicit Euler linear stability region is

1.0
0.5F
0.0

S={z€C : [14+z] <1}

05

—1.0p

-1.5f

- . L 1 .
2'0—3 —2 =1 0 1 2

From https://en.wikipedia.org/wiki/Euler method

16 ATPESC 2021, August 1-13, 2021

https://en.wikipedia.org/wiki/Euler_method

Linear Stability Example — Implicit Euler

Consider the implicit Euler method: Yn+1 = Yn + Atf(tnt1, Ynt1)
For the Dahlquist test problem, this becomes

Unil = Un + AtAYni1 < Ynar = (1 = AtN) Ly, = ... = (1 — AtA)~(+D

which only decays to zero if |1 — AtA| > 1. .

Hence the explicit Euler linear stability region is 1.5
1.0

0.5
S={z€eC: |1—-2z>1} =
-0.5
-1.0
-1.5

—2.05 -1 0 1 2 3

From https://en.wikipedia.org/wiki/Backward Euler method

17 ATPESC 2021, August 1-13, 2021

https://en.wikipedia.org/wiki/Backward_Euler_method

