E NLA

n Numerical Linear Algebra

David Keyes & the HICMA Team
Extreme Computing Research Center (ECRC)
King Abdullah University of Science and Technology

"e

et

et
CH)

9 September 2020
ol
e

S

,Va‘, | : | | ‘ ol ek o ;r_

-4 -2 D wl—lu- p H”H : .

- i, ~eiuuiatenl -
wm K w"'n a.zr -svwsl-\ 2 .;{-

” \ T T] . —~—= || RN T L] it §7 94
‘}‘} &)y B e s e e i : I] i m 1.'er=wm iz "-:m it _-
l!' ’ N X L o= o 1

Pt

Data-sparse Linear Algebra

for Large-scale Applications (ff((
on Emerging Architectures

Dennis Ritchie
1041-2011

Bell Labs
Programming Language
UNIX
(1969-1973)
-
“C 1s quirky, flawed, and an enormous success.”

“The number of UNIX installations has grown to 10, with more expected...”

E-NLA themes

We resonate with several series themes to date:

low-rank approximation (last 4 talks)
communication reduction (2 talks)

randomization (2 talks)

architectural adaptation (implicit in several talks, explicit
here)

processor and memory heterogeneity

exploitation of low precision

high-performance ML-oriented SIMT instructions

These working slides (~¥8.5MB) are in the “doc” directory at
https://github.com/ecrc/h2opus/ as “ENLA_20200909.pdf”

An improved set will be posted at the E-NLA site after the Q&A.

https://github.com/ecrc/h2opus/

Conclusions, up front

With controllable trade-offs, many linear algebra
operations adapt well to high performance on emerging
architectures through

- higher residency on the memory hierarchy
- greater SIMT/SIMD-style concurrency

- reduced synchronization and communication

Rank-structured matrices, based on uniform tiles or
hierarchical subdivision play a major role

Rank-structured matrix software is here for shared-
memory, distributed-memory, and GPU environments

Many applications are benefiting

- by orders of magnitude in memory footprint & runtime

Rank-structured matrices* — 2 types herein

e Tile low rank (TLR)
all blocks at a single level of subdivision
(could in principle vary in size) TLR
o Hierarchically low rank (HLR)
blocks are left at various levels upon)
recursive subdivision q‘,,“ HLR
weak and strong “admissibility” variants fh* weakly
e HLR more than two decades old g 2dmissible
Hackbusch (1999), Tyrtyshnikov (2000) . h
Fiedler (1993) defined “structure ranks” 5
e Prevalent topic in recent SIAM ALA S:Oiy
conferences (4 MS at 2018 HKBU mtg) { admissible

* A rank-structured matrix is a matrix with enough low-rank blocks that it pays to take advantage of them
(paraphrasing Wilkinson on sparse matrices)

‘‘‘‘‘

Step O Step 1 Step 3 Step 4

Specify two parameters: Until each block is

® Block size acceptably acceptably small:
small to handle - ® |s rank acceptably
densely small?

® Rank acceptably ~ ® |f not, subdivide
small to represent a block
block Take union of leaf blocks

(not an efficient algorithm — better in practice to compute tree structure in advance)

ool =

Example: 1D Laplacian

2 -1

-1 2

-1

O U R[N = DO

3/24

- 7/ ==

Matrices arising from

covariances
integral equations with displacement Kernels

Schur complements within discretizations of elliptic
and parabolic PDEs

Hessians from PDE-constrained optimization
fractional differential equations
radial basis functions from unstructured meshing

kernel matrices from machine learning
applications

Complexities of rank-structured factorization
For a square dense matrix of O(N) :

o “Straight” LU or LDL"'
Operations O(N?)
Storage O(N?)
e Tile low-rank (Amestoy, Buttari, L’Excellent & Mary, SISC, 2016)
Operations O(k%> N??)

Storage O(k"> N1»)

for uniform blocks with size chosen optimally for max rank k£ of any

compressed block, bounded number of uncompressed blocks per row
o Hierarchically low-rank (Grasedyck & Hackbusch, Computing, 2003)
Operations O(k* N log?N)
Storage O(k N)

for strong admissibility, where & 1s max rank of any compressed block

Also relevant to sparse problems

Classical factorizations fill in with elimination

For 3D Poisson solver on a cube with O(N) degrees of freedom:

Classical nested dissection generally requires O(N?) operations
Tile low-rank can yield O(N*?)
(Amestoy, Buttari, L’Excellent & Mary, SISC, 2016)

Hierarchically low-rank methods can yield O(N)
(Bebendorf & Hackbusch, Numer. Math., 2003)

Gains come from low-rank treatment of the resulting Schur
complements

What Kinds of applications?
Applications that possess

e memory capacity constraints (e.g., geospatial
statistics, PDE-constrained optimization)

e energy constraints (e.g., remote telescopes)

o real-time constraints (e.g., wireless commun.)

e running time constraints (e.g., chem, materials,
genome-wide association studies (GWAS))

Geospatial statistics motivation

Western Digital.

“Increasing amounts of data are being f
by remote sensing instruments and nu

while techniques to handle millions of of
historically lagged behind. [...] comput: WD BLUE
implementations that work with irregul O
observations are still rare.”

- Dorit Hammerling, N

1M X 1M dense sym DP matrix requires 4 TB, N°~ 10!3Flops

Traditional approaches: Better approaches:
® Global low rank ® Hierarchical low rank
® Zero outer diagonals ® Reduced precision outer

diagonals

Overall motivations

Mathematical aesthetic

Rank-structured matrix methods are beautiful — algebraic
generalizations of fast multipole methods

Engineering aesthetic

Data sparsity allows to tune storage and work to accuracy
requirements

Software engineering aesthetic

Cool stuff finds roles: direct and randomized floating point kernels,
tree-traversal from FMM, task-based programming, etc.

Computer architecture requirement

Emerging architectures are met on their terms: limited fast memory
per core, SIMT instructions, etc.

Application opportunities (as cited)

Reside “high” on the memory hierarchy, close to the processing elements
Rely on SIMD/SIMT-amenable batches of tasks at fine scale

Reduce synchrony in frequency and/or span

Reduce communication in number and/or volume of messages

Exploit extra memory to reduce communication volume

Perform extra flops to require fewer global operations

Use high-order discretizations to manipulate fewer DOFs (w/more ops per DOF)
Adapt floating point precision to output accuracy requirements

Take more resilience into algorithm space, out of hardware/systems space

Employ dynamic scheduling capabilities, e.g., dynamic runtime systems based DAGs
Code to specialized “back-ends” while presenting high-level APIs to general users
Exploit data sparsity to meet “curse of dimensionality” with “blessing of low rank”
Process “on the fly” rather than storing all at once (esp. large dense matrices)
Co-design algorithms with hardware, incl. computing in the network or in memory

LRG0 3 -l-Byte-per-flop ratio
x137

o3 —&-Node bandwidth (Gbit/s) a
S g 100
o w - =
N 2 =#-Node compute power (Flop/s) o~
o > ,r,;f"*\fs—-«rr—b*—"‘f’
+ N Y
Yo 10t A"
£ — A

rd
— 0O 4_;‘.4(. *_
U = e
oo J/ —h— Averages in 2020:
CC) 8 - . 0 Node power: 4274 [GF/s]
e, 5 [l Node BW: 16.4 [GB/s]
;6’ g - [l Byte-per-FLOP: 0.004 [B/F]
u>.1 é 0.1 kE Averages in 2010:

~ Node power: 31 [GF/s]
B Node BW: 2.7 [GB/s]
Bl Byte-per-FLOP: 0.09 [B/F] -
0.01 *

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

The last three #1 systems
¢ Keren Bergman’s lab at Columbia .
. has been tracking architectural TaihuLight (Nov 2017) B/F = 0.004

§ trends in memory and networking Summit (June 2018) B/F = 0.0005
interconnects for two decades.

: \K This slide is updated for Fugaku. Fugaku (June 2020) B/F = 0.303

Algorithmic opportunity

To achieve the potential of emerging architectures, we
need implementations of

* linear solvers

* Jeast squares solvers

* eigensolvers

* singular value solvers

that

o offer tunable accuracy-time-space tradeoffs
o exploit hierarchy of precisions

o may require more flops but complete earlier, thanks to more
concurrency

Two universes of NLA exist side-by-side

S
T AT e
, \\ - 2 L. - / e

— v v AN % : ! o

>~ vl P

> e W : Ak X R) N, b
e MU) Y% A > '
e y o o \!“:‘ - o 7, ok b S
v w SN N ; L S
= . S 2 v > 3
R I S e ’ Y e
F 0N) w Ir Ir
a t } j v—. i Y ‘ ; » I e a I C a

* Local indices * \

for matrix blocks (k,/)
doi {
doj {
for (i,j) inS,,doop

* Global indices *
doi {
doj {
for (i,j) in Sdo op
} }

_ / \ /

Algorithms were once flat (Cholesky, 1910)

4" '{a 'm‘-,‘c([‘ .’f’\\

der Spfeier o' chuatinue Lesis'ning
A L',/mfu;(‘,'
——— la sliline &

wrwefalts g [topgant

L A ax malle, LY /% L

f A Pudn?nuyg ™ le, we 4
st & puatnne bid d. 4 frcede
frhugoigpes ¢l { & L & IO
wx gpedirngues . KA Ao rl'.ul:

A
A Gpas ool
b

vyl > pondhe

dy sumisd oy > L

Rvrbdine d win oplims b M 4opitin AR M ssicariiicny

Lol O el % f / e

V.a fac Rt - Mose Band) - Wo rG R d'ees ell — a’ll;

I [h e n l:/r»«\(-.n 75 cacike ey uu"u poa PN b Canaasatl .

. iy - for j=2,--- ,ndo
{ Bl Mty gand

gl'.:"\:' T+ Gy, + ,:.‘.'C’ o | g]l = a’Jl/‘ell;
B i it end
1 TP e for:=2-.-- n—1do
E Mok, Lo e Aan e e 1—1 92 \1/2.
b = (a'ii - zk=1 eik) /2
ey for j=i+1,--- .ndo
1".\“) P O s x™ AL 1—1 %
| l) ’ b = (aji — 2 k=1 gjkeik) /s
l : "‘V“‘,' R AR W + «“‘.? end
O wyole d m,““:‘” : Lot d G taatopsttenty i " ’n,—l 2 1/2.
fina teglac jo- & slive. JIT brucant & 2 1 n....w'} N gnn = (a/nn - k=1 gnk) ’
Py % r,.\: :’ b valuo './ r | end

b = triangular recurrence

Architectures were flat, as well (vN, 1945

[& Feport

Joha von: Newans

Contract No. W-oT70=0ORD-4520
Betueen the
United States Army Ordnance Dapartment
and the

University of Pennsylvania

Mooroe Sehool of flectrical Enginearin
dniversity of Pammeyivanls

June 30, L1945

National Buresu of Standards
Pivizion 12
pata Prooessing Systems

Central Processing Unit

Control Unit

Input
Device

Arithmetic/Logic Unit

Memory Unit

Output
Device

One hierarchy is not so bad...

As humans managing implementation complexity,
we would prefer:

o hierarchical algorithms on flat architectures

or even (suboptimally)

o flat algorithms on hierarchical architectures

... but two independent hierarchies may not match

e need to marshal irregular structures into
uniform batches and/or

o feed dynamic runtime queues

Must address the fension between

o highly uniform vector, matrix, and general SIMT
operations — prefer regularity and predictability

o hierarchical algorithms with tree-like data structures and
scale recurrence — possess irregularity and adaptability

our target

GPU,

manycore

Available at https://github.com/ecrc/

/in NVIDIA cuBLAS\/~ in Cray LibSci

{ PEAFORMANGE UNFIED FRAMEWRAK FOR GEOSTATSTIES 0K MANY-GORE BYSTEMS
A GUIWH-Batert SVD Satwire {rameswar n Db ctid-Memory Maseove Syvierrs

.
O

Extiitie Computieg

iesearch Centes

The KALEY "
Ao G R ot et o wneyears wpmarms. The KGVD seher rason an Ghe. pwer docompostion wern) the OR Dysarviouby Wisghted Hudy
vt Aoy oo da e rcrobees doss g (GOWH, introtuced by Nekwiauboms wad Hgher [EUAM Jourral on Schsthc Competing, 2013} The

by - G wwetwrs D i Ehee, Gaeuparsd 56 Uhe LueBThmal aestagn bebapina) SVD. Hawener. the iberers S boved o cmmesrrermy
Lovet 3 artherec canpkary corhend wsé

RECURSIVE ALGORITHME: THMM st TREM KBLAS 20
) COWN Alzsrrithm pv—
- e = g
A ey el ook
= Al e ip P
B el e : ;
-~ - ———— i %
e
DR s e @ B g Ll
- O, TR FOT rwres futs
G) . s S P
P—
© R o2) 9 O - P ooy A L

o NILAS Lo o THMM G TS [o o Tho LowRar (TLR BLAS 00 GRUR
o TUN O e Mt Co
PERFORMANCE RESULTS PR v ———"

> Anrchrnas, Tus-lima] GOM
Oyrare: Bereages]
Pt Ao 1
Db vy M
Apchrovan Toudmad

[
GOAM bt bgrmme

AASE 4T wtpdlabu caincrciness

(BAUB BEl @ o omas ¢ OSR == s

Abstraction Layer
For Standardizing AP's of TaskBased Engines

AL4SAN

CHICAL COMPUTATIONS ON MANYCORE ARCHITECTURES

pE—— Rsbatérsy wnd Sciabiry The wtwtraction teper for standardaing APte of taskoased engines IALAGAN] 4 desgras o &
sy v softwars Shrary. which prowdos & coloction of APs T unfy e EIpresson of taaks and ther data
oty o] cepersdencies from asleting MAZAN supperts runtime - m atitice baed wavther forecasting, SEARTIC (Tiaging, aedl mutsrals xcksce aaphcatisea] and e characiriced by
mamery o [pp—— =
S0t e 5. 46ch D46 WM T8 owe] T . govtetgien Seth i mamsry fectpist aed arthmetic comgteaty The care Mes of HCWA & 1 dovelas fert baear agetrs
- i rarsfore. enties & mngleccde spphcaton to Futimes an thee respeciie achedAng n s
iyt § compenanta. The gosl of AVASAN i 96 10 Geate YU MISEHGr FUNTM WYSTAM, S5 10 further levarege e St Se—"

i

ARNK ALGORTHVE. e BOFTWASE

A,

+ Encrodoernon [cos over dexassel
1 -)

+ G sorize [Maters e}

g = (v =2

« e venny e wer e

ol iaves protdsn A 0
vk BRI e 0 Wk Sare
[RE| o cate [30] wih wperrte
b

e w09 1, 4
vt 1 aes o agtd et

v ome

o o oot s e
e 1) Qs arltarvlogrin
- X = PRREECH
e s = —
A 7 o] | Im l I I L ‘
y .
[e 5 e oo r a
l'l v I A - \ > .
3 m-u anll ' -] »
L= s —— - =] == 0SA

github.com/ecrc/h2opus/

Today introducing H2Opus

an ‘H2 matrix computation library

4 High-level operations)
« Hierarchical matrix-matrix multiplication (and re-compression)
« Generation of approximate matrix inverse, via Newton-Schulz iteration

e Formation of Schur complements, via approximate inverses

.

J
- N

H-matrix construction from matrix-vector sampling (HARA)
Low-rank updates (HLRU)

Matrix compression (Hcompress)

Basis orthogonalization (Horthog)

Matrix-vector multiplication (Hgemv)

Matrix construction from kernel function (Hconstruct)
Generation of matrix structure from admissibility condition

Batched LA for GPUs Manycore LA for CPUs

« MAGMA e OpenMP

o CUuBLAS, KBLAS PAR Intel MKL)

Zoology of H-matrices (not comprehensive)

_ Flat bases Nested bases

Weak
Strong 5
L

[1] Ambikasaran and Darve, Journal of Scientific Computing, 2013

[2] Xia, Chandrasekaran, Gu, and Li, Numerical Linear Algebra with
Applications, 2010

[3] Hackbusch, Hierarchical Matrices: Algorithms and Analysis,
Springer, 2015
[4] Borm, Linear Algebra and its Applications, 2007

Nested bases of ‘H 2-matrices

2

» Representation is a triplet of trees. Every block is of the form
USV?! and bases are nested.

Ambartsumyan, Boukaram, Bui, Ghattas, K., Stadler, Turkiyyah & Zampini, Hierarchical Matrix
Approximations of Hessians Arising in Inverse Problems Governed by PDEs, SISC, 2020 (to appear)

ACR
AHMED
ASKIT
BLR PaStiX
CE
DMHIF
DMHM
GOFMM
H2Lib
H2Pack
HLib
HLibPro
hm-toolbox
LoRaSp
MF-HODLR
MUMPS-BLR
Structured CHOLMOD
STRUMPACK

Cyclic reduction

H* and ‘H-LU
H-LU
Supernodal
He-LU
Multifrontal

Newton-Schulz

Geometry-oblivious Compression, MV

H* and ‘H-LU

Proxy points compression, MV

H* and ‘H-LU

H-* and H-LU
numerous

H2-LU
Multifrontal
Multifrontal
Supernodal
H-LU, Preconditioning

HODLR
BLR
H?
ID
H
HODLR
H?
He
H
H
HSS, HODLR
H?
HODLR
BLR
BLR
HSS/BLR/HODLR

Chavez, Turkiyyah & K. (2017)
Bebendorf (2005)

Yu, March, Xiao & Biros (2016)
Pichon & Faverge (2017)
Sushnikova & Oseledets (2016)

Li & Ying (2016)

Li, Poulson & Ying (2014)

Yu, Reiz & Biros (2018)
Christophersen & Borm (2015)
Huang, Xing & Chow (2020)

Borm, Grasedyck & Hackbusch (2004)
Kriemann & Hackbusch (2013)
Massei, Robol & Kressner (2020)
Pouransari, Coulier & Darve (2013)
Aminfar & Darve (2016)

Amestoy & Mary (2016)

Chadwick & Bindel (2015)

Ghysels, Li, Liu & Claus (2020)

HiCMA design strategies

1) Employ dynamic runtime systems based on
directed acyclic task graphs (DAGS)

= e.g., PARSEC, Quark, StarPU, Charm++, Legion,
OmpSs, HPX

* dynamic scheduling capabilities in OpenMP

2) Co-design libraries to diverse architectures
while presenting high-level application
programmer interface

3) Exploit data sparsity of rank-structured Most of
type (TLR & HLR) the talk
* meet the “curse of dimensionality” with the spent
“blessing of low rank” here

o Advantages

+ remove artifactual synchronizations in the form
of subroutine boundaries

+ remove artifactual orderings in the form of pre-
scheduled loops

+ €Xpose more concurrency
o Disadvantages
+ pay overhead of managing task graph

+ potentially lose some memory locality

1) Reduce over-ordering and synchronization
through DAGs, ex.: generalized eigensolver

Ax = ABx

Operation Explanation LAPACK routine name
® OB=LxLT Cholesky factorization POTRF
@® Q@ C=L1xAxL T application of triangular factors SYGST

or HEGST
© O T=QT xCxQ tridiagonal reduction SYEVD or HEEVD
Q Tx= X QR iteration STERF

00000000060
000000000060

Ltaief, Luszczek, Haidar & Dongarra, Solving the Generalized Symmetric Eigenvalue Problem using Tile
Algorithms on Multicore Architectures, Adv Parallel Comp, 2012

Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs

e Diagram shows a
dataflow ordering of the
steps of a 4x4 symmetric
generalized eigensolver

e Nodes are tasks, color-
coded by type, and edges
are data dependencies

e Time is vertically
downward

e Wide is good; short is
good

CRCRCNCRCRCRCRONCRCRONCRCNCHCNONCRONONCRCNCNCRO

o Advantages

« tiling and recursive subdivision create large
numbers of small problems that can be marshaled
for batched operations on GPUs and MICs

x amortize call overheads

= polyalgorithmic approach based on block size

+ non-temporal stores, coalesced memory accesses,
double-buffering, etc. reduce sensitivity to memory

o Disadvantages
+ code is more complex

+ code is architecture-specific at the bottom

“Hourglass” model for algorithms
(borrowed from internet protocols)

algorithmic
infrastructure

architectures
(ARM, AMD, IBM, Intel, NVIDIA, ...)

> U .
7 o
4 py 1
o 'L |
< -
- 7
S < n

o Advantages

+ shrink memory footprints to live higher on the
memory hierarchy

= higher means quick access (1 arithmetic intensity)
+ reduce operation counts
+ tune work to accuracy requirements
= e.g., preconditioner versus solver
o Disadvantages
+ pay cost of (re-)compression

+ not all operators compress well

Reduce memory footprint and
operation complexity with low rank

Replace dense blocks with reduced rank representations,
whether “born dense” or as arising during matrix operations
" use high accuracy (high rank) to build “exact” solvers
" use low accuracy (low rank) to build preconditioners
Consider hardware parameters in tuning block sizes and
maximum rank parameters
" e.g., cache sizes, warp sizes
Use randomized SVD (Halko, Martinsson & Tropp, 2009) to
form low-rank blocks
" a flop-intensive GEMM-based flat algorithm
Implement in “batches” of leaf blocks
" flattening trees in the case of HLR

Tile Low Rank (TLR) is a compromise
between optimality and complexity

~

[E |]

ENNE Dense _J

B | SN tiles J

S| T T —‘] IJ IJ

1- on 1~ |‘ I |) J .;J I.Ju- IJ(LAJ'_ D

Fixed ranks Fixed accuracy
Preconditioners Variable ranks

Performance oriented Dense/Sparse Direct Solvers

T. Mary, PhD Dissertation, Block Low-Rank multifrontal solvers: complexity, performance, and

scalability, 2017.
C. Weisberger, PhD Dissertation, Improving multifrontal solvers by means of algebraic Block

Low-Rank representations, 2013.

H2Opus features (1)

Performance-oriented library for H? computations

Runs on GPUs
includes batched QR, RRQR, and SVD dense linear algebra routines

Can also run on CPU-only machines
using shared-memory parallelism (via OpenMP and MKL)

Can represent weak and strong admissiblity matrix structures

using geometric KD-tree partitioning and (user-controllable) admissibility
condition

Constructs kernel matrices from user-specified kernel function

for example, covariances matrices from Matérn kernels

Optimized matrix-vector multiplication (“algebraic FMM”)

single-vector mult achieving ~80% of peak bandwidth on GPUs
multiple vector mults leverage fast GEMMs on GPUs

= Generation of Hierarchical Orthogonal Bases
= via batched QR operations in upsweep through bases trees

= followed by expressing matrix blocks in the new orthogonal Q basis
« Hierarchical Matrix Compression

= ranks increase during algebraic manipulation

= perform RRQR /SVD operations followed by truncation of bases to
desired accuracy

- followed by expressing matrix blocks in the new bases

- Low Rank Updates

= allows globally low rank updates to be compressed into a hierarchical
matrix

= “local” updates (that only affect a portion of the matrix) are also
supported

H2Opus features (3)

Matrix generation from matrix-vector sampling

- generates hierarchical matrix from a “black-box’’ operator
accessible via mat-vec products

- generalizes highly successful randomized algorithms (for generating globally
low-rank approximations of large dense matrices) to the hierarchical setting

- formulated as a sequence of low-rank updates at the various matrix levels

Matrix-matrix multiplication operation (via randomized sampling)

- takes advantage of the high-performance of multi-vector sampling

Approximate inverse computation
= via Newton-Schulz iteration and its higher-order variants
= can converge very quickly when warm-started from a nearby solution
= Hessian of previous iteration in optimization

= Jacobian of previous iteration in nonlinear solver

Schur complements

= and other algebraic expressions that can be sampled

Programmed pause

Questions?
We resume with examples of TLR and HLR

Caveat

TLR and HLR methods are being applied beyond the
rigorous guidance we expect of more traditional linear
algebraic methods, as engineered into software

e.g., how to choose blockwise tolerances when fitting
ranks to satisfy global tolerances for various uses?

Apologies in advance for examples in this presentation

Not unlike some compromises that are accepted to
increase opportunities for parallelism in full-rank

methods
e.g., limiting domain of pivoting

Good news: interesting opportunities for theorists

istics model problems

stat

1

14
Input correlation matr

Geospat

inate

random coordi

1X

in the unit square or unit cube with

th
Mateérn kernel decay

i

generation w

® e.g., linear exp to square exp decay, a;; ~ exp (-c|x;- xj|2)

Large dense symmetric systems arise as
covariance matrices in spatial statistics

* Climate and weather applications have many
measurements located regularly or irregularly in a region;
prediction is needed at other locations

* Modeled as realization of Gaussian or Matérn spatial
random field, with parameters to be fit

* Leads to evaluating the log-likelihood function involving a
large dense (but data sparse) covariance

(0) = —~ZT51(0)Z — ~1og|S(0)]

2 nverse 2 determinant

* Determinant and inverse of 2 depend upon Cholesky,
dominated by DPOTREF factorization routine (next slides)

HiCMA TLR vs. Intel MKL on shared memory

Geospatial statistics (Gaussian kernel) to accuracy 1.0e-8
® Three generations of Intel manycore (Sandy Bridge, Haswell, Skylake)
® Two generations of linear algebra (classical dense and tile low rank)

(o)
5 Red arrows:
10
speedups from
. hardware,
02| | .".0'}, same algorithm
0 o
0 J o
* 7’ £
- £ P AAAAA;X Green arrows:
= ‘O// ARA
- X speedups from
classical 4 10 g & P P
/ ‘ A"ﬁ' ‘ MKL-SNB algorlthm,
- o ‘ L& "A/ «s0 = MKL-HSW
. ~ L, —O= MKL-SKL same hardware
tile low rank O o HICMA-SNB
- 100 e s 5 2 | , = «A = HICMA-HSW
w/StarPU | & | e HIEMASKL Blue arrow:
27K 40K 54K 68K81K 108K135K 176K 230K 297K
Matrix size from both

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations,
Euro-Par 2018

HIiCMA vs. ScaLAPACK on distributed memory

104

[I I I I
e SCaLAPACK 16 nodes

m=Omes ScalAPACK 32 nodes
e SCalLAPACK 64 nodes
=== ScalLAPACK 128 nodes
10% 1 o ScaLAPACK 256 nodes
= pm = HICMA-TLR Cholesky-1

arly 2 orders of

agnitude for 0.5M size
0 trix on 16 nodes
] 2
e 10
=
10!
10°

54K 8iK 10'8I<l35K 189K 270K 351K 459K594K
Matrix size

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations,
EuroPar 2018

Memory footprint for DP matrix of size 1M

104

= 10°;

o] e Ful| rank

T | et Synthetic

;C_) | ==mOm== Statistics

= 102': O—O‘O_Q—O‘O—o
01

Accuracy Threshold

418 A

1 to 2 orders of

maghnitude less,

depending upon
accuracy

10° 103 1076 10~° 10712 10715

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations,

EuroPar 2018

TLR tour de force

Cholesky factorization of a TLR matrix (DPOTRF) derived from
Gaussian covariance of random distributions, up to 42M DOFs, on
up to 4096 nodes (131,072 Haswell cores) of a Cray XC40

® would require 14.1 PetaBytes in dense DP
® would require 77 days by ScaLAPACK (at the TLR rate of 3.7 Pflop/s)

640007
32000 A
©
® 16000 -
£
|_
8000 -
3
40004 16 @ st-3D—sqgexp
16 @ st—2D-sqgexp|
0 10 20 30 40

Millions of DOFs

Cao, Pei, Akbudak, Mikhalev, Bosilca, Ltaief, K. & Dongarra, Extreme-Scale Task-Based Cholesky
Factorization Toward Climate and Weather Prediction Applications. PASC ‘20 (ACM), 2020

Compress (once) on the fly, solve many with HLU

Exterior Helmholtz problem: acoustic scattering BIE

44001 MKL-CascadelLake m
4000 Generation

| Bm HiCMA-Cascadelake
Bl Generation&Compression

per RH$ solve time

Compression overhead

[
800 A
]
400 I
, = N .J , : S :
© d O © V(D Q
D AN AY .0 ,;L,\/,,)O) Q'\'

A A A DT AN
WP R AN Py ARSI
Matrix Size

Al-Harthi, Alomairy, Akbudak, Chen, Ltaief, Bagci & K., Solving Acoustic Boundary Integral Equations
using High Performance Tile Low Rank LU Factorization, Proceedings of ISC High Performance 2020

Reference

LU,

Al-Harthi, Alomairy,
Akbudak, Chen,
Ltaief, Bagci & K.

Lecture Notes in

Computer Science
12151:209

(2020, open access)

Solving Acoustic Boundary Integral
Equations Using High Performance Tile
Low-Rank LU Factorization

Noha Al-Harthi, Rabab Alomairy('g), Kadir Akbudak, Rui Chen,
Hatem Ltaief, Hakan Bagci, and David Keyes

Extreme Computing Research Center, Computer, Electrical and Mathematical
Sciences and Engineering Division, King Abdullah University of Science
and Technology, Thuwal, Jeddah 23955, Saudi Arabia
{Noha .Harthi ,Rabab.Omairy,Kadir.Akbudak,Rui.Chen,Hatem.Ltaief,
Hakan.Bagci,David.Keyes}@kaust.edu.sa

Abstract. We design and develop a new high performance implemen-
tation of a fast direct LU-based solver using low-rank approximations
on massively parallel systems. The LU factorization is the most time-

®™

Check for
updates

consuming step in solving systems of
analyzing acoustic scattering from lar,

is obtained by discretizing the boundar
problem using a higher-order Nystrom
the inherent data sparsity of the matrij
centric approximations while still capt
tion. In particular, the proposed LU-b
Rank (TLR) data compression formaty
cal Computations on Manycore Archit
the complexity of “classical” dense dir
order. We taskify the underlying boy
fine-grained computations. We then ey
StarPU to orchestrate the scheduling of
distributed-memory systems. The resy
mits to compensate for the load imbalaj
while mitigating the overhead of data 1
our TLR LU-based solver and study th
ferent numerical accuracies. The new ']
the state-of-the-art dense factorization
on various parallel systems, for analys
synthetic and real geometries.

to award the

GCS AWARI

to

Ms. Noha Al-Harthi |
Ms. Rabab Alomairy |
Dr. Kadir Akbudak |
Mr. Rui Chen

Keywords: Tile low-rank LU-based
Equations - Acoustic scattering - Tas§}

Dynamic runtime systems
Berlin, June 22, 2020

At

GCS

Gauss Cantro for Supercomputing

ISC 2020

The Board of Directors of the Gauss Centre for Supercomputing (GCS) is pleased

2020

Dr. Hatem Ltaief
Dr. Hakan Bagci
Dr. David Keyes

of King Abdullah University of Science and Technology (KAUST), Thuwal, KSA

for their outstanding scientific work, submitted for the ISC 2020 research paper session:

SOLVING ACOUSTIC BOUNDARY INTEGRAL
EQUATIONS USING HIGH PERFORMANCE
TILE LOW-RANK LU FACTORIZATION

A L

Prof. Dr-Ing. Michael M. Resch Dr. Claus Avel Miller
Cnaiman of the acs
Vico Cnaitman f the Board of Drcctos, GCS
© The Author(s) 2020
P. Sadayappan et al. (Eds.): ISC High Performance
https://doi.org/10.1007/978-3-030-50743-5_11
(Gauss CentroforSupercomteg (60S) eV, | Awsandersiotz 1 10178 Bere (Gernsry)

So far, Tile Low Rank examples ...

--;

Tile Low Rank IT / | ‘ETS Hierarchical Low Rank

Operations O(k%> N*?) Operations O(k* N log’N)

Storage O(k"> N'») Br n-ER Storage O(k N)

(for an accuracy-dependent k)

A prime target for HLR linear algebra:
PDE-constrained optimization

e Dense Hessian matrices arise from

+ second variation of data misfit functional in
deterministic inverse problems

(2.1) minimize J(m) := F(u(m)) + aR(m)
data misfit regularization

where the state variables u(m) € RY depend on the model parameters m € R" via
solution of the discretized PDEs

(22) g(m7 U,) = K(m)u i f — Oa

+ covariance in Bayesian inversion for quantifying
uncertainties in stochastic inverse problems

Prime target for HLR linear algebra:
PDE-constrained optimization

o Historical choices

+ abandon prospects for dimension-independent
convergence rates in inverse problems by avoiding
Hessians

= a path to nowhere, given future problem scales

+ use globally low-rank Hessian approximation

m valid for limited information ...

= ... not where inverse problems want to be, with their many
sources and many sensors

e Hierarchical low rank valid in informed regime

Hierarchical MatVec by tree-traversal

® Representation is a triplet of trees. Every block is of the form
USV', and bases are nested.

® Informally the matrix is:
Ay>=D+U-S- V!
® We can perform fast, asymptotically optimal, matrix-vector prod.

Agpx =Dz +U-S- VT -z =Dz +U-(S- (V7T - 1))

[
ol

TTV| & T ol
ol
Tt A E
| =
e mr U, E,
] i | =

.........
nnnnnnnnn

Ambartsumyan, Boukaram, Bui, Ghattas, K., Stadler, Turkiyyah & Zampini, Hierarchical Matrix
Approximations of Hessians Arising in Inverse Problems Governed by PDEs, SISC, 2020 (to appear)

Hierarchical MatVec execution time

2—1

Time (s)

. Linear
—o— HMV SP - o- HMV DP
—a&— Streamed HMV SP - 4- Streamed HMV DP

I —m— HMV SP (CUBLAS) - @- HMV DP (CUBLAS)
—_— Linear Growth

- \ | \ |

9l4 915 916 917 918 919 920 <g======== matrix sizes from 16K to 1M
Problem Size

» 3D covariance matrices from spatial statistics

» running on P100 GPU

» accuracy 1073 computed as ||Aa: — AHLIZH/HA:EH

» leaf size m = 64

Boukaram, Turkiyyah & K., Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and
Compression, ACM TOMS (2019)

Hierarchical MatVec bandwidth

800 | ‘ |
Theoretical peak
— 600 |- ‘
E —o— HMV SP - - HMV DP
D) —a— Streamed HMV SP - 4- Streamed HMV DP
: 400 |- —a— HMV SP (CUBLAS) - ;- HMV DP (CUBLAS)
- ——— Theoretical Peak
5
o
5 200 -
~
0l =
| | | |

214 215 216 217 218 219 220
Problem Size
3D covariance matrices from spatial statistics

-
» running on P100 GPU
» accuracy 107® computed as |Az — A% z||/|| Az

» leaf size m = 64

Boukaram, Turkiyyah & K., Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and
Compression, ACM TOMS (2019)

MatVecs with multiple vectors

20 [— | —
—e— GPU
—m— CPU
1% - =
Q()
=
T 10} -
D)
A,
N
5 N
O ' | \ | | .
0 20 40 60

Vectors
» Speedup over single-vector MatVec
> Single precision, size 21° (524,288)
» GPU version obtains 90% of GEMM

K., Ltaief & Turkiyyah, Hierarchical Algorithms on Hierarchical Architectures, Phil Trans Roy Soc Ser A (2020)

H matrix-H matrix multiplication

» can be cast as the problem of constructing an H-matrix from
matvec operations

» we can do HGEMV operations efficiently on GPUs

— HGEMV on multiple vectors is even more efficient

» HARA construction of product also performed efficiently on the GPU

Fast matvecs = fast approx inversions with Newton-Schulz

T T T - 1 [: 1 |
: : —®— Samples € = 102
600 - —8— Samples ¢ = 1074]
10' | ! 500 |- i
© i 1 8
E g 3 g 400 |)
=
1 . 1 @»
& g 300 =
100 | —8— HARA ¢ =1072 | | > .—f____,,_.»-".
- —®— HARA ¢ = 10~* |] 200 |- T o .
- O(nlogn) 7 o
L | | | | | = | | | | |
214 215 216 217 218 214 215 216 217 218
Problem Size Problem Size

Boukaram, Turkiyyah & K., Randomized GPU Algorithms for the Construction of Hierarchical Matrices from
MatVec Operations, SISC, 2019

Hgemv on Summit (1024 GPUs)

(distributed release of H2Opus will follow shortly)

m Spatial statistics application in 2D
m N = 29 points per GPU

m Approximated to an accuracy € = 10~7

—eo—nv=1-@W nv=2 @ nNv=4 ——nv=2_8 —eo—nv=1-@ nv=2 —@— nv=4 no — 8
—+—nv=16-@-nv=32-@-nv=64—— O(P) —— U = 16 -@--nv = 32 —@-nv — 64

222 l I { T] 100 ‘ | '

ZEr | 80 | |
R 1) .
& E 60 [R |
Q = .

5 E
9213 1 | =
i o--0-90 -0 -0 -@--0-@--0 o
il | W
W —————a————h
H‘_FH.__.__._—_‘__.__—’—.
27 I | | l : | | I | I
20 22 24 26 28 210 90 92 94 06 98 910
GPUs o

Boukaram, Hierarchical Matrix Operations on GPUs, PhD thesis, 2020 [online @ library.kaust.edu.sa]

Optimization examples in SISC paper

1D transient diffusion

invert for coefficient

2D stationary advection-
diffusion

invert for source

2D time-domain
electromagnetism in
diffusive limit

invert for coefficient

2D frequency-domain
wave equation

invert for coefficient

Distance, km

Inversion example:
transient electromagnetic inversion

Important geophysical sensing modality; of interest to Aramco
Governing equations are Maxwell’s equations in the diffusive limit.

Electrical conductivity of oil is much lower than that of water,
sediments, and salt bodies

Time-domain inversion is the next frontier in this area

We have developed a custom HPC code (using MFEM, PETSc) and
specialized solvers for the simulations

Below is an example with water, sediments, salt dome, and a
T-shape anomaly to recover

water

sediments

/N ,
Stefano Zampini

MFEM, PETSc developer

Inversion example:
transient electromagnetic inversion

107! . . . : . 10°

10° 107

0 2 4 6 8 10 12 14
Newton iterations

0

2

4
Newton

6
iteration

8
s

70

12

107

10°

llgll

10

10%

1 2 3 7 8

4) 6
Newton iterations

Inversion History: Newton solutions for 3 mesh continuation steps
(top), and norm of the gradient as a function of the Newton step

(bottom).

Inversion insight: frequency rank dependence

e f[requency domain model problem of the most common sensing
modality in geophysical exploration

® Marmousi model excited with different angular frequencies using a
single supersource input

@ local ranks of Hessians grow better than linearly with frequency

0

) 5000
4500
4000
3500

' 3000
2500
2000

0 1 2 3 4 5 6 7 8 9

Distance, km

Depth, km
N [l o
w N w = w

low =60
low =45
J0w =230

100

L WK

Rank
o
|
|
|
]
]
[—]
]
]
I ———
[]
e ——
[—]
—
[E—]
| ——
| I—

Reference

Ambartsumyan,
Boukaram, Bui-Thanh,

Ghattas, K., Stadler,
Turkiyyah & Zampini

SIAM Journal of
Scientific Computing

(2020, to appear)

HIERARCHICAL MATRIX APPROXIMATIONS OF HESSIANS
ARISING IN INVERSE PROBLEMS GOVERNED BY PDES*

ILONA AMBARTSUMYANT, WAJIH BOUKARAM?!, TAN BUI-THANH', OMAR GHATTAS?,
DAVID KEYES!, GEORG STADLER!, GEORGE TURKIYYAHY, AND STEFANO ZAMPINI#

Abstract. Hessian operators arising in inverse problems governed by partial differential equa-
tions (PDEs) play a critical role in delivering efficient, dimension-independent convergence for both
Newton solution of deterministic inverse problems, as well as Markov chain Monte Carlo sampling of
posteriors in the Bayesian setting. These methods require the ability to repeatedly perform such op-
erations on the Hessian as multiplication with arbitrary vectors, solving linear systems, inversion, and
(inverse) square root. Unfortunately, the Hessian is a (formally) dense, implicitly-defined operator
that is intractable to form explicitly for practical inverse problems, requiring as many PDE solves as
inversion parameters. Low-rank approximations are effective when the data contain limited informa-
tion about the parameters, but become prohibitive as the data become more informative. However,
the Hessians for many inverse problems arising in practical applications can be well approximated
by matrices that have hierarchically low-rank structure. Hierarchical matrix representations promise
to overcome the high complexity of dense representations and provide effective data structures and
matrix operations that have only log-linear complexity. In this work, we describe algorithms for
constructing and updating hierarchical matrix approximations of Hessians and for constructing their
inverses. Data parallel versions of these algorithms, appropriate for GPU execution, are presented
and studied on a number of representative inverse problems involving time-dependent diffusion,
advection-dominated transport, frequency domain acoustic wave propagation, and low frequency
Maxwell equations, demonstrating up to an order of magnitude speedup.

Key words. Hessians, inverse problems, PDE-constrained optimization, Newton methods,
hierarchical matrices, matrix compression, log-linear complexity, GPU, low rank updates, Newton-
Schulz.

AMS subject classifications. 35Q93, 49N45, 65F30, 65M32, 65F10, 65Y05

1. Introduction. The Hessian operator plays a central role in optimization
of systems governed by partial differential equations (PDEs), also known as PDE-
constrained optimization. While the approach proposed here applies more broadly to
other PDE-constrained optimization problems including optimal control and optimal
design, we will focus on an important class: inverse problems. The goal of an inverse
problem is to infer model parameters, given observational data, a forward model or
state equation (here in the form of PDEs) mapping parameters to observables, and
any prior information on the parameters. Often the parameters represent infinite-
dimensional fields, such as heterogeneous coefficients (including material properties),
distributed sources, initial or boundary conditions, or geometry. We focus here on this
infinite dimensional setting, leading to large scale inverse problems after discretiza-
tion.

The Hessian operator plays a critical role in inverse problems. For deterministic
inverse problems, finding the parameters that best fit the data is typically formu-
lated as a regularized nonlinear least squares optimization problem. Its objective

*Submitted to the editors.
Funding: This work was supported by the King Abdullah University of Science and Technology

(KAUST) Office of Sponsored Research (OSR) under Award No: OSR-~2018-CARF-3666.

TOden Institute for Computational Engineering and Sciences, The University of Texas at Austin.
(ailona@austin.utexas.edu, tanbui@ices.utexas.edu, omar@ices.utexas.edu).

tExtreme Computing Research Center, King Abdullah University of Science and Technology.
(wajihhalim.boukaram@kaust.edu.sa, stefano.zampini@kaust.edu.sa, david.keyes@kaust.edu.sa).

8Courant Institute of Mathematical Sciences, New York University. (stadler@cims.nyu.edu).

IDepartment of Computer Science, American University of Beirut, Lebanon. (gt02@aub.edu.lb).

1

Fractional derivative application

e 15t-order in time, fractional Laplacian in 1D, 2D or 3D space
literature is mostly 1D, since operator is dense

this example: github.com/ecrc/h2opus/fractional_diffusion/

o Hot topic for diffusive flux models that are sub-Fickian (e.g.,
porous media, foamy media)
ou

= Aa/Q
ot “

where A®/24 is the d-dimensional fractional Laplacian operator of
order a, 0 < a0 < 2:

a/2 = U(y) T ’U,(X)
A% u(x) = Cu,q /Rd Sy F—r dy,

and C\, 4 is a normalizing constant.

The smooth decaying nature of the kernel allows the discretized
operator to be compressed, and therefore represented efficiently by
a hierarchical matrix.

Smooth particle discretization

m Uses a smooth particle method, discretizing the d-dimensional
spatial domain using a finite set of N particles.

m The i-th particle is defined by its position x;, volume V;, and
strength u;, and

1 1
u(x) = Z Viuins (x — xi), ns(X) = ﬁw_% exp (—|X|2) ;

where ns is a smoothed radial kernel of unit mass with a smoothing
parameter 0.

m The particle positions x are separately evolving as Lagrangian
tracers (and may be transported by the underlying medium in the
presence of advective terms).

m This allows_the discretized fractional diffusion equations to be
written as:|U = AnyxnvUpnxip where all A;; entries are nonzero.

key operation in explicit integration is a dense mat-vec

HLR representation

m The nature of the kernel allows blocks of A to have low rank
representations for any desired approximation level €

m Sample problem: 2d square region, N particles distributed
uniformly, KD-tree binary partitioning produced a clustering,
geometric admissibility criterion generates the matrix structure
(i.e., blocks that admit low rank representations)

m Resulting matrix structure:

Fractional diffusion application

m construction time and resulting memory footprint for a = 1.5
m target approximation accuracy € = 107°
m problems of various sizes up to N ~ 2M
m execution hardware: 12-core workstation

m both compression steps have linear complexity

—&— Low Rank Blocks (Pre-compression) —@— Dense Blocks

: : Tt : T : . I I I —— Low Rank Blocks (Post-compression) O(N)
—e— nterpolation

]_02 —a— Algebraic Compression = 102 1 T T T T T T LI
—A— Total E z 3
— O(N) - - .
. - . 1L 4
= -
. 101 E = O s 7

(D] = g S~
& - 5 > ol i
S] =
_ - RS "]
~ B -
10%: E 107% ¢ 3
L : : . : : : L [1 L | 1 L | L

214 215 216 217 218 219 220 221 214 215 216 217 218 219 220 221
Problem Size Problem Size

Boukaram, Lucchesi, Turkiyyah, Le Maitre, Knio & K., Hierarchical Matrix Approximation for
Space-fractional Diffusion Equations, Comp Meths Appl Mech Eng, 2020

Fractional diffusion application

Overall savings in memory of the hierarchical matrix (dense blocks
and compressed blocks) computed to an overall accuracy of € = 107

Comparison of the hierarchical matrix representation and the
(hypothetical) dense representation of the discretized operator

Substantial reduction in memory, of O(N) vs O(N?)

N | H* Memory (GB) | Dense Memory (GB)
2= 0.09 2

g 0.20 8

e 0.40 32

i 0.85 128

e 1.65 012

g 3.47 2048

220 6.74 &ly2

Ak 14.0 32768
footprint ratio of 2,339
for 2M DOFs

Low Rank Memory (GB)

Rank variation with accuracy

m looser accuracy e allows more reduction in the ranks of matrix
blocks (local ranks) and in the resulting memory footprint

m shown are the memory footprints of the low rank blocks for a range
of target accuracies for a problem of size N = 22°

m also shown are the maximum local block ranks for every level of the
corresponding hierarchical matrix

22 i | LU | | LU I | | LLLILELILI B | [Irrrr T T |IIIIL

rank ~ |log € |
9l |- _ lic=102 L

30 00e=10"* | -

Boe=10-5 |

0L il
2 E 20 | N
10| N M J
2_2 B ITTN W (TTRNN | TR TN llllll_ 0 'D|:| _D|] _ﬂ _H' "H' _|:|“ -m' _|]' e D & I] 2 |:| i
= 1wF g we 1 T T T 7

R R O N O
3 4 b5 6 ¢ 8 9 10 11 12 13 14

Accuracy Ll

Scaling of mat-vec

m mat-vec is the core operation in an explicit time integration scheme

m CPU (12-core) and GPU (Nvidia P100) results are shown
(e =1077)

m GPU is about 8x faster asymptotically

m linear complexity observed, as expected

E— I I | | I | |
"| —e—hgemv-CPU
100 5| —=—hgemv-GPU
F—— O(n)

101 3

Time (s)

103 3

214 2I15 2I16 2I17 2I18 2I19 2I20 2I21
Problem Size

Error (||[AX — I|])

m Matrix inverse approximations may be computed via

Newton-Schulz for inverse

Newton-Schulz iteration: X,;1 = (2 — X,A4)X,

m or its (more arithmetically intensive) higher-order variants:

XPHZXP(I‘l‘Rp"'”'

m Sample results for inverting A 4+ ol with an order 16 iteration.

+ R

v—1 s
— Xp Zizo Rp

N = 216, Each iterate constructed to an approximation e.

10° |

10-1 |

102

| | ——0=10"%,e=10"3

——= e =10

1 2 3 4
NS Iteration

| [INg=10-3,e=10"5

i HEe=10"
o= 1074 e=10"°

3

Level

O

Newton-Schulz as CG preconditioner

m PCG iterations (a = 1.5, N = 21¢)

100 | :
=
= 0=]
=
)
I —4 | |
¢ 10
=
T |5 d
o
—
— =4
€3 . —— 0=10"%e=10"°
1075 —— 0=10"3,e=10"% ||
Diagonal Preconditioner
10—10 | | | | | 1 |

0 100 200 300 400 500 600
CG Iteration

Reference

Boukaram, Lucchesi,
Turkiyyah, Le Maitre,
Knio & K.

Computer Methods in
Applied Mechanics and
Engineering
369:113191
(2020)

t') Available online at www.sciencedirect.com

A H H Computer methods
e ScienceDirect e
i mechanics and
s engineering
FI.SEVIER Comput. Methods Appl. Mech. Engrg. 369 (2020) 113191

www.elsevier.com/locate/cma

Hierarchical matrix approximations for space-fractional diffusion
equations

Wajih Boukaram®, Marco Lucchesi®, George Turkiyyah®, Olivier Le Maitre®,
Omar Knio**, David Keyes®
2 King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

Y Department of Computer Science, American University of Beirus, Beirut, Lebanon
¢ Centre de Mathématiques Appliquées, CNRS, Inria, Ecole Polytechnique, Palaiseaw, France

Received 18 January 2020: received in revised form 27 May 2020; accepted 29 May 2020
Available online xxxx

Abstract

Space fractional diffusion models generally lead to dense discrete matrix operators, which lead to substantial computational
challenges when the system size becomes large. For a state of size N, full representation of a fractional diffusion matrix would
require O(N2) memory storage requirement, with a similar estimate for matrix—vector products. In this work, we present 2
matrix representation and algorithms that are amenable to efficient implementation on GPUs, and that can reduce the cost
of storing these operators to O(N) asymptotically. Matrix—vector multiplications can be performed in asymptotically linear
time as well. Performance of the algorithms is assessed in light of 2D simulations of space fractional diffusion equation with
constant diffusivity. Attention is focused on smooth particle approximation of the governing equations, which lead to discrete
operators involving explicit radial kernels. The algorithms are first tested using the fundamental solution of the unforced space
fractional diffusion equation in an unbounded domain, and then for the steady, forced, fractional diffusion equation in a bounded
domain. Both matrix-inverse and pseudo-transient solution approaches are considered in the latter case. Our experiments show
that the construction of the fractional diffusion matrix, the matrix—vector multiplication, and the generation of an approximate
inverse pre-conditioner all perform very well on a single GPU on 2D problems with N in the range 10° — 10°. In addition,
the tests also showed that, for the entire range of parameters and fractional orders considered, results obtained using the H2
approximations were in close agreement with results obtained using dense operators, and exhibited the same spatial order of
convergence. Overall, the present experiences showed that the H2 matrix framework promises to provide practical means to
handle large-scale space fractional diffusion models in several space dimensions. at a computational cost that is asymptotically
similar to the cost of handling classical diffusion equations.

(© 2020 Elsevier B.V. All rights reserved.

Keywords: Fractional diffusion; Smooth particle approximation; Hierarchical matrix; Linear complexity; GPU

1. Introduction

Nonlocal continuum models, expressed as fractional differential equations, have gained significant popularity
in recent years, as they have shown great success in representing the behavior of a variety of systems in

* Corresponding author.
E-mail address: omarknio@kaustedu.sa (O. Knio).

https://doi.org/ 10.1016/j.cma.2020. 113191
0045-7825/© 2020 Elsevier B.V. All rights reserved.

Hierarchical Computations on
Manycore Architectures: HICMA*

Static/Dynamic
Runtime

hwiocinstios

B HiCMA Distribution

HCORE
STARS-H

* appearing one thesis at a time at https://github.com/ecrc

- External Dependencies

e Research

+ Heuristics or theory for tuning precisions of block
replacements with ultimate purpose(s) for rank-structured
matrix in view

o Orderings of DOFs from multidimensional problems that
minimize overall TLR and HLR memory footprint

+ Point blockings and point-block scalings for multicomponent
problems

e Development

+ Generalization to variable rank size at leaves of the HLR tree
(currently allocated for a max rank per level)

+ Optimizing parallelization of distributed implementation
above “C-level” (in analogy to multigrid)

A falcon flies to where the prey will be ...

flying towards the target

flying to where the

target will be .
""7‘“&3""7" 2(0)

!

i

C. H. Brighton,
et al., PNAS

... rather than where it is 2017)

Those who did the work

L 22 2

Ahmad Abdelfattah Rabab AlOmairy Wajih Boukaram Ali Charara

- A

Kadir Akbudak Hatem Ltaief Georgé Tur’kiyyah Steano Zémpini

N F. '

Very special thanks to...

’l

4 A'\.

Hatem Ltaief George Tu

/ f]

rkiyyah

R

Reference

K., Ltaief & Turkiyyah

Philosophical
Transactions of the
Royal Society
Series A
378:20190055

(2020, open access)

PHILOSOPHICAL
TRANSACTIONS A

rsta.royalsocietypublishing.org

ResearCh 8 CrossMark

click for updates

Article submitted to journal

Subject Areas:
numerical analysis, high performance
computing

Keywords:

computational linear algebra,
hierarchical matrices, exascale
architectures

Author for correspondence:
D. E. Keyes
e-mail: david.keyes@kaust.edu.sa

THE ROYAL SOCIETY

PUBLISHING

Hierarchical Algorithms on
Hierarchical Architectures

D. E. Keyes!, H. Ltaief! and G. Turkiyyah'2

IExtreme Computing Research Center, King Abdullah
University of Science and Technology, Thuwal
28955-6900, Saudi Arabia

2Department of Computer Science, American
University of Beirut 1107 2020, Lebanon

A traditional goal of algorithmic optimality, squeezing
out flops, has been superseded by evolution in
architecture. Flops no longer serve as a reasonable
proxy for all aspects of complexity. Instead, algorithms
must now squeeze memory, data transfers, and
synchronizations, while extra flops on locally cached
data represent only small costs in time and energy.
Hierarchically low rank matrices realize a rarely
achieved combination of optimal storage complexity
and high computational intensity for a wide class
of formally dense linear operators that arise in
applications for which exascale computers are being
constructed. They may be regarded as algebraic
generalizations of the Fast Multipole Method. Methods
based on these hierarchical data structures and their
simpler cousins, tile low rank matrices, are well
proportioned for early exascale computer architectures,
which are provisioned for high processing power
relative to memory capacity and memory bandwidth.
They are ushering in a renaissance of computational
linear algebra. A challenge is that emerging hardware
architecture possesses hierarchies of its own that do
not generally align with those of the algorithm. We
describe modules of a software toolkit, Hierarchical
Computations on Manycore Architectures (HICMA),
that illustrate these features and are intended as
building blocks of applications, such as matrix-free
higher-order methods in optimization and large-scale
spatial statistics. Some modules of this open source
project have been adopted in the software libraries of
major vendors.

@© The Authors. Published by the Royal Society under the terms of the
Creative C License http:

by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

Sponsor acknowledgement

< NVIDIA.

GPU

RESEARCH
CENTER

(intel)

—

Hewlett Packard
Enterprise

NVIDIA GPU
Research Center
2012

Intel Parallel

Computing Center
2015

Cray Center
of Excellence
2015

Conclusions, recapped

With controllable trade-offs, many linear algebra
operations adapt well to high performance on emerging
architectures through

- higher residence on the memory hierarchy
- greater SIMT/SIMD-style concurrency

- reduced synchronization and communication

Rank-structured matrices, based on uniform tiles or
hierarchical subdivision play a major role

Rank-structured matrix software is here for shared-
memory, distributed-memory, and GPU environments

Many applications are benefiting

- by orders of magnitude in memory footprint & runtime

Iconographic conclusion

Poetic conclusion

“Curse of dimension,”
Can you be mitigated
By low rank’s blessing?

Vast sea of numbers
Can you be described by few
As bones define flesh?

-
=
QO
=
W
»
S
=
2

david.keyes@kaust.edu.sa

