
David Keyes & the HiCMA Team
Extreme Computing Research Center (ECRC)

King Abdullah University of Science and Technology
9 September 2020

Data-sparse Linear Algebra
for Large-scale Applications
on Emerging Architectures

Happy Dennis Ritchie’s birthday
(born 9 September 1941)

“C is quirky, flawed, and an enormous success.”
“The number of UNIX installations has grown to 10, with more expected...”

(1969-1973)

E-NLA themes
We resonate with several series themes to date:
n low-rank approximation (last 4 talks)
n communication reduction (2 talks)
n randomization (2 talks)
n architectural adaptation (implicit in several talks, explicit

here)
§ processor and memory heterogeneity
§ exploitation of low precision
§ high-performance ML-oriented SIMT instructions

These working slides (~8.5MB) are in the “doc” directory at
https://github.com/ecrc/h2opus/ as “ENLA_20200909.pdf”

An improved set will be posted at the E-NLA site after the Q&A.

https://github.com/ecrc/h2opus/

Conclusions, up front
n With controllable trade-offs, many linear algebra

operations adapt well to high performance on emerging
architectures through
§ higher residency on the memory hierarchy
§ greater SIMT/SIMD-style concurrency
§ reduced synchronization and communication

n Rank-structured matrices, based on uniform tiles or
hierarchical subdivision play a major role

n Rank-structured matrix software is here for shared-
memory, distributed-memory, and GPU environments

n Many applications are benefiting
§ by orders of magnitude in memory footprint & runtime

Rank-structured matrices* – 2 types herein
n Tile low rank (TLR)

§ all blocks at a single level of subdivision
(could in principle vary in size)

n Hierarchically low rank (HLR)
§ blocks are left at various levels upon

recursive subdivision
§ weak and strong “admissibility” variants

n HLR more than two decades old
§ Hackbusch (1999), Tyrtyshnikov (2000)
§ Fiedler (1993) defined “structure ranks”

n Prevalent topic in recent SIAM ALA
conferences (4 MS at 2018 HKBU mtg)

* A rank-structured matrix is a matrix with enough low-rank blocks that it pays to take advantage of them
(paraphrasing Wilkinson on sparse matrices)

TLR

HLR
weakly

admissible

HLR
strongly

admissible

Conceptualization of H-matrix construction

Specify two parameters:
n Block size acceptably

small to handle
densely

n Rank acceptably
small to represent a
block

Until each block is
acceptably small:
n Is rank acceptably

small?
n If not, subdivide

block
Take union of leaf blocks

(not an efficient algorithm – better in practice to compute tree structure in advance)

Example: 1D Laplacian

3/2

7/8

2

What types of matrices are candidates?
Matrices arising from

• covariances
• integral equations with displacement kernels
• Schur complements within discretizations of elliptic

and parabolic PDEs
• Hessians from PDE-constrained optimization
• fractional differential equations
• radial basis functions from unstructured meshing
• kernel matrices from machine learning

applications

Complexities of rank-structured factorization
For a square dense matrix of O(N) :
n “Straight” LU or LDLT

§ Operations O(N3)
§ Storage O(N2)

n Tile low-rank (Amestoy, Buttari, L’Excellent & Mary, SISC, 2016)

§ Operations O(k0.5 N2.5)
§ Storage O(k0.5 N1.5)
§ for uniform blocks with size chosen optimally for max rank k of any

compressed block, bounded number of uncompressed blocks per row

n Hierarchically low-rank (Grasedyck & Hackbusch, Computing, 2003)

§ Operations O(k2 N log2N)
§ Storage O(k N)
§ for strong admissibility, where k is max rank of any compressed block

Also relevant to sparse problems
Classical factorizations fill in with elimination

For 3D Poisson solver on a cube with O(N) degrees of freedom:
n Classical nested dissection generally requires O(N2) operations

n Tile low-rank can yield O(N4/3)
(Amestoy, Buttari, L’Excellent & Mary, SISC, 2016)

n Hierarchically low-rank methods can yield O(N)
(Bebendorf & Hackbusch, Numer. Math., 2003)

n Gains come from low-rank treatment of the resulting Schur
complements

What kinds of applications?
Applications that possess

n memory capacity constraints (e.g., geospatial
statistics, PDE-constrained optimization)

n energy constraints (e.g., remote telescopes)
n real-time constraints (e.g., wireless commun.)
n running time constraints (e.g., chem, materials,

genome-wide association studies (GWAS))

Geospatial statistics motivation
“Increasing amounts of data are being produced (e.g.,
by remote sensing instruments and numerical models),
while techniques to handle millions of observations have
historically lagged behind. […] computational
implementations that work with irregularly-spaced
observations are still rare.”

- Dorit Hammerling, NCAR, July 2019

Traditional approaches:
n Global low rank
n Zero outer diagonals

Better approaches:
n Hierarchical low rank
n Reduced precision outer

diagonals

1M ✕ 1M dense sym DP matrix requires 4 TB, N3 ~ 1018 Flops

Overall motivations
n Mathematical aesthetic

§ Rank-structured matrix methods are beautiful – algebraic
generalizations of fast multipole methods

n Engineering aesthetic
§ Data sparsity allows to tune storage and work to accuracy

requirements

n Software engineering aesthetic
§ Cool stuff finds roles: direct and randomized floating point kernels,

tree-traversal from FMM, task-based programming, etc.

n Computer architecture requirement
§ Emerging architectures are met on their terms: limited fast memory

per core, SIMT instructions, etc.

n Application opportunities (as cited)

Some “universals” of exascale computing

• Employ dynamic scheduling capabilities, e.g., dynamic runtime systems based DAGs
• Code to specialized “back-ends” while presenting high-level APIs to general users
• Exploit data sparsity to meet “curse of dimensionality” with “blessing of low rank”
• Process “on the fly” rather than storing all at once (esp. large dense matrices)
• Co-design algorithms with hardware, incl. computing in the network or in memory

Strategies in progress

• Exploit extra memory to reduce communication volume
• Perform extra flops to require fewer global operations
• Use high-order discretizations to manipulate fewer DOFs (w/more ops per DOF)
• Adapt floating point precision to output accuracy requirements
• Take more resilience into algorithm space, out of hardware/systems space

Strategies in practice

• Reside “high” on the memory hierarchy, close to the processing elements
• Rely on SIMD/SIMT-amenable batches of tasks at fine scale
• Reduce synchrony in frequency and/or span
• Reduce communication in number and/or volume of messages

Architectural imperatives

HPL Top 10 bandwidth trends, 2010-2020

Fugaku

The last three #1 systems
TaihuLight (Nov 2017) B/F = 0.004

Summit (June 2018) B/F = 0.0005
Fugaku (June 2020) B/F = 0.303

Keren Bergman’s lab at Columbia
has been tracking architectural
trends in memory and networking
interconnects for two decades.
This slide is updated for Fugaku.

Algorithmic opportunity
To achieve the potential of emerging architectures, we
need implementations of
• linear solvers
• least squares solvers
• eigensolvers
• singular value solvers

that
n offer tunable accuracy-time-space tradeoffs
n exploit hierarchy of precisions
n may require more flops but complete earlier, thanks to more

concurrency

Two universes of NLA exist side-by-side

c/o Instageeked.com
* Global indices *
do i {

do j {

for (i,j) in S do op
}

}

Flat Hierarchical
* Local indices *
for matrix blocks (k,l)

do i {

do j {
for (i,j) in Sk,l do op

}
}

Algorithms were once flat (Cholesky, 1910)

triangular recurrence

Architectures were flat, as well (vN, 1945)

One hierarchy is not so bad…

As humans managing implementation complexity,
we would prefer:

● hierarchical algorithms on flat architectures
or even (suboptimally)

● flat algorithms on hierarchical architectures

… but two independent hierarchies may not match
n need to marshal irregular structures into

uniform batches and/or
n feed dynamic runtime queues

H-
matrices

GPU,
manycore

Must address the tension between
n highly uniform vector, matrix, and general SIMT

operations – prefer regularity and predictability
n hierarchical algorithms with tree-like data structures and

scale recurrence – possess irregularity and adaptability

Hierarchical algorithms and extreme scale

our target

No miracles will appear in this talk L

Available at https://github.com/ecrc/
in Cray LibSciin NVIDIA cuBLAS

github.com/ecrc/h2opus/

• MAGMA
• cuBLAS, KBLAS

Batched LA for GPUs

• H-matrix construction from matrix-vector sampling (HARA)
• Low-rank updates (HLRU)
• Matrix compression (Hcompress)
• Basis orthogonalization (Horthog)
• Matrix-vector multiplication (Hgemv)
• Matrix construction from kernel function (Hconstruct)
• Generation of matrix structure from admissibility condition

Core utilities

• Hierarchical matrix-matrix multiplication (and re-compression)
• Generation of approximate matrix inverse, via Newton-Schulz iteration
• Formation of Schur complements, via approximate inverses

High-level operations

Today introducing H2Opus
an H2 matrix computation library

• OpenMP
• Intel MKL

Manycore LA for CPUs

Zoology of H-matrices (not comprehensive)

Flat bases Nested bases
Weak
admissibility HODLR [1] HSS [2]

Strong
admissibility

H [3] H 2 [4]

[1] Ambikasaran and Darve, Journal of Scientific Computing, 2013
[2] Xia, Chandrasekaran, Gu, and Li, Numerical Linear Algebra with
Applications, 2010
[3] Hackbusch, Hierarchical Matrices: Algorithms and Analysis,
Springer, 2015
[4] Börm, Linear Algebra and its Applications, 2007

Nested bases of H 2-matrices

Ambartsumyan, Boukaram, Bui, Ghattas, K., Stadler, Turkiyyah & Zampini, Hierarchical Matrix
Approximations of Hessians Arising in Inverse Problems Governed by PDEs, SISC, 2020 (to appear)

Some other LA software leveraging data sparsity
Package Technique(s) Format Author (year)

ACR Cyclic reduction H Chavez, Turkiyyah & K. (2017)

AHMED H-1 and H-LU H Bebendorf (2005)

ASKIT H-LU HODLR Yu, March, Xiao & Biros (2016)

BLR PaStiX Supernodal BLR Pichon & Faverge (2017)

CE H2-LU H2 Sushnikova & Oseledets (2016)

DMHIF Multifrontal ID Li & Ying (2016)

DMHM Newton-Schulz H Li, Poulson & Ying (2014)

GOFMM Geometry-oblivious Compression, MV HODLR Yu, Reiz & Biros (2018)

H2Lib H-1 and H-LU H2 Christophersen & Börm (2015)

H2Pack Proxy points compression, MV H2 Huang, Xing & Chow (2020)

HLib H-1 and H-LU H Börm, Grasedyck & Hackbusch (2004)

HLibPro H-1 and H-LU H Kriemann & Hackbusch (2013)

hm-toolbox numerous HSS, HODLR Massei, Robol & Kressner (2020)

LoRaSp H2-LU H2 Pouransari, Coulier & Darve (2013)

MF-HODLR Multifrontal HODLR Aminfar & Darve (2016)

MUMPS-BLR Multifrontal BLR Amestoy & Mary (2016)

Structured CHOLMOD Supernodal BLR Chadwick & Bindel (2015)

STRUMPACK H-LU, Preconditioning HSS/BLR/HODLR Ghysels, Li, Liu & Claus (2020)

HiCMA design strategies
1) Employ dynamic runtime systems based on

directed acyclic task graphs (DAGs)
§ e.g., PaRSEC, Quark, StarPU, Charm++, Legion,

OmpSs, HPX
§ dynamic scheduling capabilities in OpenMP

2) Co-design libraries to diverse architectures
while presenting high-level application
programmer interface

3) Exploit data sparsity of rank-structured
type (TLR & HLR)
§ meet the “curse of dimensionality” with the

“blessing of low rank”

Most of
the talk
spent
here

1) Taskification based on DAGs
n Advantages

◆ remove artifactual synchronizations in the form
of subroutine boundaries

◆ remove artifactual orderings in the form of pre-
scheduled loops

◆ expose more concurrency
n Disadvantages

◆ pay overhead of managing task graph
◆ potentially lose some memory locality

1) Reduce over-ordering and synchronization
through DAGs, ex.: generalized eigensolver

Ltaief, Luszczek, Haidar & Dongarra, Solving the Generalized Symmetric Eigenvalue Problem using Tile
Algorithms on Multicore Architectures, Adv Parallel Comp, 2012

Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs
● Diagram shows a

dataflow ordering of the
steps of a 4×4 symmetric
generalized eigensolver

● Nodes are tasks, color-
coded by type, and edges
are data dependencies

● Time is vertically
downward

● Wide is good; short is
good

1:1

 2:4

3:9

4:4

5:11

6:8

 7:6

8:5

9:7

10:4

11:4

12:2

13:2

14:3

15:3

16:1

 17:2

18:1

19:1

20:1

21:1

22:1

23:1

24:1

2) Co-design to diverse architectures
n Advantages

◆ tiling and recursive subdivision create large
numbers of small problems that can be marshaled
for batched operations on GPUs and MICs
■ amortize call overheads
■ polyalgorithmic approach based on block size

◆ non-temporal stores, coalesced memory accesses,
double-buffering, etc. reduce sensitivity to memory

n Disadvantages
◆ code is more complex
◆ code is architecture-specific at the bottom

“Hourglass” model for algorithms
(borrowed from internet protocols)

applications

architectures
(ARM, AMD, IBM, Intel, NVIDIA, …)

algorithmic
infrastructure

3) Rank-structured operators
n Advantages

◆ shrink memory footprints to live higher on the
memory hierarchy
■ higher means quick access (↑ arithmetic intensity)

◆ reduce operation counts
◆ tune work to accuracy requirements

■ e.g., preconditioner versus solver

n Disadvantages
◆ pay cost of (re-)compression
◆ not all operators compress well

Reduce memory footprint and
operation complexity with low rank

• Replace dense blocks with reduced rank representations,
whether “born dense” or as arising during matrix operations
§ use high accuracy (high rank) to build “exact” solvers
§ use low accuracy (low rank) to build preconditioners

• Consider hardware parameters in tuning block sizes and
maximum rank parameters
§ e.g., cache sizes, warp sizes

• Use randomized SVD (Halko, Martinsson & Tropp, 2009) to
form low-rank blocks
§ a flop-intensive GEMM-based flat algorithm

• Implement in “batches” of leaf blocks
§ flattening trees in the case of HLR

Tile Low Rank (TLR) is a compromise
between optimality and complexity

H2Opus features (1)
§ Performance-oriented library for H2 computations
§ Runs on GPUs

§ includes batched QR, RRQR, and SVD dense linear algebra routines

§ Can also run on CPU-only machines
§ using shared-memory parallelism (via OpenMP and MKL)

§ Can represent weak and strong admissiblity matrix structures
§ using geometric KD-tree partitioning and (user-controllable) admissibility

condition

§ Constructs kernel matrices from user-specified kernel function
§ for example, covariances matrices from Matérn kernels

§ Optimized matrix-vector multiplication (“algebraic FMM’’)
§ single-vector mult achieving ~80% of peak bandwidth on GPUs
§ multiple vector mults leverage fast GEMMs on GPUs

H2Opus features (2)
§ Generation of Hierarchical Orthogonal Bases

§ via batched QR operations in upsweep through bases trees
§ followed by expressing matrix blocks in the new orthogonal Q basis

§ Hierarchical Matrix Compression
§ ranks increase during algebraic manipulation
§ perform RRQR / SVD operations followed by truncation of bases to

desired accuracy
§ followed by expressing matrix blocks in the new bases

§ Low Rank Updates
§ allows globally low rank updates to be compressed into a hierarchical

matrix
§ “local’’ updates (that only affect a portion of the matrix) are also

supported

H2Opus features (3)
§ Matrix generation from matrix-vector sampling

§ generates hierarchical matrix from a “black-box’’ operator
accessible via mat-vec products

§ generalizes highly successful randomized algorithms (for generating globally
low-rank approximations of large dense matrices) to the hierarchical setting

§ formulated as a sequence of low-rank updates at the various matrix levels

§ Matrix-matrix multiplication operation (via randomized sampling)
§ takes advantage of the high-performance of multi-vector sampling

§ Approximate inverse computation
§ via Newton-Schulz iteration and its higher-order variants
§ can converge very quickly when warm-started from a nearby solution

§ Hessian of previous iteration in optimization
§ Jacobian of previous iteration in nonlinear solver

§ Schur complements
§ and other algebraic expressions that can be sampled

Programmed pause

Questions?
We resume with examples of TLR and HLR

Caveat
n TLR and HLR methods are being applied beyond the

rigorous guidance we expect of more traditional linear
algebraic methods, as engineered into software
§ e.g., how to choose blockwise tolerances when fitting

ranks to satisfy global tolerances for various uses?

n Apologies in advance for examples in this presentation
n Not unlike some compromises that are accepted to

increase opportunities for parallelism in full-rank
methods
§ e.g., limiting domain of pivoting

n Good news: interesting opportunities for theorists

Geospatial statistics model problems
Input correlation matrix: random coordinate
generation within the unit square or unit cube with
Matérn kernel decay
n e.g., linear exp to square exp decay, aij ~ exp (-c|xi - xj|2)

2D 3D

Large dense symmetric systems arise as
covariance matrices in spatial statistics

• Climate and weather applications have many
measurements located regularly or irregularly in a region;
prediction is needed at other locations

• Modeled as realization of Gaussian or Matérn spatial
random field, with parameters to be fit

• Leads to evaluating the log-likelihood function involving a
large dense (but data sparse) covariance

• Determinant and inverse of Σ depend upon Cholesky,
dominated by DPOTRF factorization routine (next slides)

inverse determinant

HiCMA TLR vs. Intel MKL on shared memory
Geospatial statistics (Gaussian kernel) to accuracy 1.0e-8
n Three generations of Intel manycore (Sandy Bridge, Haswell, Skylake)
n Two generations of linear algebra (classical dense and tile low rank)

Red arrows:
speedups from

hardware,
same algorithm

Green arrows:
speedups from

algorithm,
same hardware

Blue arrow:
from both

classical

tile low rank
w/StarPU

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations,
Euro-Par 2018

Nearly 2 orders of
magnitude for 0.5M size
matrix on 16 nodes

HiCMA vs. ScaLAPACK on distributed memory

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations,
EuroPar 2018

Memory footprint for DP matrix of size 1M

4 TB

EuroPar 2018

1 to 2 orders of
magnitude less,
depending upon

accuracy

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations,
EuroPar 2018

TLR tour de force

64000

Cholesky factorization of a TLR matrix (DPOTRF) derived from
Gaussian covariance of random distributions, up to 42M DOFs, on
up to 4096 nodes (131,072 Haswell cores) of a Cray XC40
n would require 14.1 PetaBytes in dense DP
n would require 77 days by ScaLAPACK (at the TLR rate of 3.7 Pflop/s)

Millions of DOFs
Cao, Pei, Akbudak, Mikhalev, Bosilca, Ltaief, K. & Dongarra, Extreme-Scale Task-Based Cholesky
Factorization Toward Climate and Weather Prediction Applications. PASC ‘20 (ACM), 2020

Compress (once) on the fly, solve many with HLU

Compression overhead

per RHS solve time

Exterior Helmholtz problem: acoustic scattering BIE

Al-Harthi, Alomairy, Akbudak, Chen, Ltaief, Bagci & K., Solving Acoustic Boundary Integral Equations
using High Performance Tile Low Rank LU Factorization, Proceedings of ISC High Performance 2020

Reference

Al-Harthi, Alomairy,
Akbudak, Chen,

Ltaief, Bagci & K.

Lecture Notes in
Computer Science

12151:209
(2020, open access)

So far, Tile Low Rank examples …

(for an accuracy-dependent k)

Tile Low Rank
Operations O(k0.5 N2.5)

Storage O(k0.5 N1.5)

Hierarchical Low Rank
Operations O(k2 N log2N)

Storage O(k N)

A prime target for HLR linear algebra:
PDE-constrained optimization

n Dense Hessian matrices arise from
◆ second variation of data misfit functional in

deterministic inverse problems

◆ covariance in Bayesian inversion for quantifying
uncertainties in stochastic inverse problems

data misfit regularization

Prime target for HLR linear algebra:
PDE-constrained optimization

n Historical choices
◆ abandon prospects for dimension-independent

convergence rates in inverse problems by avoiding
Hessians
■ a path to nowhere, given future problem scales

◆ use globally low-rank Hessian approximation
■ valid for limited information …
■ … not where inverse problems want to be, with their many

sources and many sensors

n Hierarchical low rank valid in informed regime

Hierarchical MatVec by tree-traversal
n

n

n

Ambartsumyan, Boukaram, Bui, Ghattas, K., Stadler, Turkiyyah & Zampini, Hierarchical Matrix
Approximations of Hessians Arising in Inverse Problems Governed by PDEs, SISC, 2020 (to appear)

Hierarchical MatVec execution time

Linear

matrix sizes from 16K to 1M

Boukaram, Turkiyyah & K., Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and
Compression, ACM TOMS (2019)

Hierarchical MatVec bandwidth
Theoretical peak

Boukaram, Turkiyyah & K., Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and
Compression, ACM TOMS (2019)

MatVecs with multiple vectors

Ø Speedup over single-vector MatVec
Ø Single precision, size 219 (524,288)
Ø GPU version obtains 90% of GEMM

K., Ltaief & Turkiyyah, Hierarchical Algorithms on Hierarchical Architectures, Phil Trans Roy Soc Ser A (2020)

H matrix-H matrix multiplication

Fast matvecs ⇒ fast approx inversions with Newton-Schulz

Boukaram, Turkiyyah & K., Randomized GPU Algorithms for the Construction of Hierarchical Matrices from
MatVec Operations, SISC, 2019

Hgemv on Summit (1024 GPUs)
(distributed release of H2Opus will follow shortly)

Boukaram, Hierarchical Matrix Operations on GPUs, PhD thesis, 2020 [online @ library.kaust.edu.sa]

n 1D transient diffusion
§ invert for coefficient

n 2D stationary advection-
diffusion
§ invert for source

n 2D time-domain
electromagnetism in
diffusive limit
§ invert for coefficient

n 2D frequency-domain
wave equation
§ invert for coefficient

Optimization examples in SISC paper

water

sediments

Inversion example:
transient electromagnetic inversion

Stefano Zampini
MFEM, PETSc developer

Inversion example:
transient electromagnetic inversion

Inversion insight: frequency rank dependence
n

n

n

Reference

Ambartsumyan,
Boukaram, Bui-Thanh,

Ghattas, K., Stadler,
Turkiyyah & Zampini

SIAM Journal of
Scientific Computing

(2020, to appear)

HIERARCHICAL MATRIX APPROXIMATIONS OF HESSIANS1

ARISING IN INVERSE PROBLEMS GOVERNED BY PDES⇤2

ILONA AMBARTSUMYAN† , WAJIH BOUKARAM‡ , TAN BUI-THANH† , OMAR GHATTAS† ,3

DAVID KEYES‡ , GEORG STADLER§ , GEORGE TURKIYYAH¶, AND STEFANO ZAMPINI‡4

Abstract. Hessian operators arising in inverse problems governed by partial di↵erential equa-5
tions (PDEs) play a critical role in delivering e�cient, dimension-independent convergence for both6
Newton solution of deterministic inverse problems, as well as Markov chain Monte Carlo sampling of7
posteriors in the Bayesian setting. These methods require the ability to repeatedly perform such op-8
erations on the Hessian as multiplication with arbitrary vectors, solving linear systems, inversion, and9
(inverse) square root. Unfortunately, the Hessian is a (formally) dense, implicitly-defined operator10
that is intractable to form explicitly for practical inverse problems, requiring as many PDE solves as11
inversion parameters. Low-rank approximations are e↵ective when the data contain limited informa-12
tion about the parameters, but become prohibitive as the data become more informative. However,13
the Hessians for many inverse problems arising in practical applications can be well approximated14
by matrices that have hierarchically low-rank structure. Hierarchical matrix representations promise15
to overcome the high complexity of dense representations and provide e↵ective data structures and16
matrix operations that have only log-linear complexity. In this work, we describe algorithms for17
constructing and updating hierarchical matrix approximations of Hessians and for constructing their18
inverses. Data parallel versions of these algorithms, appropriate for GPU execution, are presented19
and studied on a number of representative inverse problems involving time-dependent di↵usion,20
advection-dominated transport, frequency domain acoustic wave propagation, and low frequency21
Maxwell equations, demonstrating up to an order of magnitude speedup.22

Key words. Hessians, inverse problems, PDE-constrained optimization, Newton methods,23
hierarchical matrices, matrix compression, log-linear complexity, GPU, low rank updates, Newton-24
Schulz.25

AMS subject classifications. 35Q93, 49N45, 65F30, 65M32, 65F10, 65Y0526

1. Introduction. The Hessian operator plays a central role in optimization27

of systems governed by partial di↵erential equations (PDEs), also known as PDE-28

constrained optimization. While the approach proposed here applies more broadly to29

other PDE-constrained optimization problems including optimal control and optimal30

design, we will focus on an important class: inverse problems. The goal of an inverse31

problem is to infer model parameters, given observational data, a forward model or32

state equation (here in the form of PDEs) mapping parameters to observables, and33

any prior information on the parameters. Often the parameters represent infinite-34

dimensional fields, such as heterogeneous coe�cients (including material properties),35

distributed sources, initial or boundary conditions, or geometry. We focus here on this36

infinite dimensional setting, leading to large scale inverse problems after discretiza-37

tion.38

The Hessian operator plays a critical role in inverse problems. For deterministic39

inverse problems, finding the parameters that best fit the data is typically formu-40

lated as a regularized nonlinear least squares optimization problem. Its objective41

⇤Submitted to the editors.
Funding: This work was supported by the King Abdullah University of Science and Technology

(KAUST) O�ce of Sponsored Research (OSR) under Award No: OSR-2018-CARF-3666.
†Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin.

(ailona@austin.utexas.edu, tanbui@ices.utexas.edu, omar@ices.utexas.edu).
‡Extreme Computing Research Center, King Abdullah University of Science and Technology.

(wajihhalim.boukaram@kaust.edu.sa, stefano.zampini@kaust.edu.sa, david.keyes@kaust.edu.sa).
§Courant Institute of Mathematical Sciences, New York University. (stadler@cims.nyu.edu).
¶Department of Computer Science, American University of Beirut, Lebanon. (gt02@aub.edu.lb).

1

This manuscript is for review purposes only.

Fractional derivative application
n 1st-order in time, fractional Laplacian in 1D, 2D or 3D space

§ literature is mostly 1D, since operator is dense
§ this example: github.com/ecrc/h2opus/fractional_diffusion/

n Hot topic for diffusive flux models that are sub-Fickian (e.g.,
porous media, foamy media)

Smooth particle discretization

key operation in explicit integration is a dense mat-vec

HLR representation

Fractional diffusion application

Boukaram, Lucchesi, Turkiyyah, Le Maitre, Knio & K., Hierarchical Matrix Approximation for
Space-fractional Diffusion Equations, Comp Meths Appl Mech Eng, 2020

Fractional diffusion application
Overall savings in memory of the hierarchical matrix (dense blocks
and compressed blocks) computed to an overall accuracy of 𝜖 = 10-5

Comparison of the hierarchical matrix representation and the
(hypothetical) dense representation of the discretized operator
Substantial reduction in memory, of

footprint ratio of 2,339
for 2M DOFs

Rank variation with accuracy

rank ~ | log 𝜖 |c

Scaling of mat-vec

Newton-Schulz for inverse

Newton-Schulz as CG preconditioner

Reference

Boukaram, Lucchesi,
Turkiyyah, Le Maitre,

Knio & K.

Computer Methods in
Applied Mechanics and

Engineering
369:113191

(2020)

Hierarchical Computations on
Manycore Architectures: HiCMA*

* appearing one thesis at a time at https://github.com/ecrc

Some ripe directions
n Research

◆ Heuristics or theory for tuning precisions of block
replacements with ultimate purpose(s) for rank-structured
matrix in view

◆ Orderings of DOFs from multidimensional problems that
minimize overall TLR and HLR memory footprint

◆ Point blockings and point-block scalings for multicomponent
problems

n Development
◆ Generalization to variable rank size at leaves of the HLR tree

(currently allocated for a max rank per level)
◆ Optimizing parallelization of distributed implementation

above “C-level” (in analogy to multigrid)

A falcon flies to where the prey will be …

… rather than where it is

flying to where the
target will be

flying towards the target

C. H. Brighton,
et al., PNAS

(2017)

Those who did the work

Ali ChararaWajih BoukaramAhmad Abdelfattah Rabab AlOmairy

George TurkiyyahHatem Ltaief Stefano ZampiniKadir Akbudak

Very special thanks to…

George TurkiyyahHatem Ltaief

Reference

K., Ltaief & Turkiyyah

Philosophical
Transactions of the

Royal Society
Series A

378:20190055
(2020, open access)

Sponsor acknowledgement

NVIDIA GPU
Research Center
2012

Cray Center
of Excellence
2015

Intel Parallel
Computing Center
2015

Conclusions, recapped
n With controllable trade-offs, many linear algebra

operations adapt well to high performance on emerging
architectures through
§ higher residence on the memory hierarchy
§ greater SIMT/SIMD-style concurrency
§ reduced synchronization and communication

n Rank-structured matrices, based on uniform tiles or
hierarchical subdivision play a major role

n Rank-structured matrix software is here for shared-
memory, distributed-memory, and GPU environments

n Many applications are benefiting
§ by orders of magnitude in memory footprint & runtime

Iconographic conclusion

Poetic conclusion

“Curse of dimension,”
Can you be mitigated

By low rank’s blessing?

Vast sea of numbers
Can you be described by few

As bones define flesh?

Thank you!

اركش

david.keyes@kaust.edu.sa

