

# **Direct Sparse Linear Solvers, Preconditioners**

SuperLU, STRUMPACK, with hands-on examples

**Pieter Ghysels**, AMD **Sherry Li**, Lawrence Berkeley National Laboratory

extremecomputingtraining.anl.gov



# Agenda [11:15 – 12:30]

Setup for SuperLU hands-on (5 min) Overview of sparse direct solvers + SuperLU (30 min)

Setup for STRUMPACK hands-on (5 min) STRUMPACK with compression techniques (30 min)





## polaris setup

https://xsdk-project.github.io/MathPackagesTraining2024/setup instructions/

Copy all examples to your home:

cd ~

rsync -a /eagle/ATPESC2024/EXAMPLES/track-5-numerical .

Get a single GPU node

qsub -I -I select=1 -I filesystems=home:eagle -I walltime=1:00:00 -q ATPESC -A ATPESC2024

Follow SuperLU lesson at:

https://xsdk-project.github.io/MathPackagesTraining2024/lessons/superlu\_dist



## SpLU tiime on Polaris (AMD EPYC 7543P, NVIDIA A100)

export matdir=/eagle/ATPESC2024/usr/MathPackages/datafiles export OMP\_NUM\_THREADS=1

- 3D algorithm: mpiexec -n 2 pddive3d -r 1 -c 1 -d 2 \${matdir}/<matrix file> | tee output
  - Offload GEMM and Scatter in Schur-complement, panel factor still on CPU
- 2D algorithm: mpiexec -n 2 pddrive -r 1 -c 2 \${matdir}/<matrix file> | tee output
  - Only offload GEMM

|            |                             | 3D code |       | 2D code |       |
|------------|-----------------------------|---------|-------|---------|-------|
|            |                             | 1x1x1   | 1x1x2 | 1x1     | 1x2   |
| Li4244.bin | CPU (SUPERLU_ACC_OFFLOAD=0) | 201.0   | 118.6 | 198.8   | 103.2 |
|            | +GPU                        | 3.2     | 1.8   | 130.9   | 73.2  |
| nd24k.mtx  | CPU (SUPERLU_ACC_OFFLOAD=0) | 167.2   | 110.9 | 178.1   | 97.8  |
|            | +GPU                        | 4.1     |       | 152.7   | 87.0  |



Algorithm tour of sparse direct solvers (illustration with SuperLU\_DIST)



## Gaussian Elimination (GE) to solve Ax=b

• First step of GE:

$$A = \begin{bmatrix} \alpha & w^{T} \\ v & B \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ v/\alpha & I \end{bmatrix} \cdot \begin{bmatrix} \alpha & w^{T} \\ 0 & C \end{bmatrix}$$
$$C = B - \frac{v \cdot w^{T}}{\alpha}$$

- Repeat GE on C
- Result in LU factorization (A = LU)
  - L lower triangular with unit diagonal, U upper triangular
- Then, x is obtained by solving two triangular systems with L and U

Growth factor:  

$$g_n = \frac{\max_{i,j,k} \left| a_{i,j}^{(k)} \right|}{\max_{i,j} \left| a_{i,j} \right|} \le 2^{n-1}$$



## Strategies of solving sparse linear systems

- Iterative methods: (e.g., Krylov, multigrid, ...)
  - A is not changed (read-only)
  - Key kernel: sparse matrix-vector multiply
    - Easier to optimize and parallelize
  - Low algorithmic complexity, but may not converge
- Direct methods:
  - A is modified (factorized) : A = L\*U
    - Harder to optimize and parallelize
  - Numerically robust, but higher algorithmic complexity
- Often use direct method to precondition iterative method
  - Solve an easier system: M<sup>-1</sup>Ax = M<sup>-1</sup>b



## Exploit sparsity

- 1) Structural sparsity
  - Defined by {0, 1} structure (Graphs)
  - LU factorization ~ O(N<sup>2</sup>) flops, for many 3D discretized PDEs
- 2) Data sparsity (usually with approximation)
  - On top of 1), can find data-sparse structure in dense (sub)matrices (often involve approximation)
  - LU factorization ~ O(N polylog(N))

SuperLU: only structural sparsity

STRUMPACK: combine structural and data sparsity



#### PDE discretization leads to sparse matrices

• Poisson equation in 2D (continuum)

$$\frac{\partial^2 u}{\partial x^2}(x, y) + \frac{\partial^2 u}{\partial y^2}(x, y) = f(x, y), \quad (x, y) \in \mathbb{R}$$
$$u(x, y) = g(x, y), \quad (x, y) \text{ on the boundary}$$

• Stencil equation (discretized)

$$4 \cdot u(i,j) - u(i-1,j) - u(i+1,j) - u(i,j-1) - u(i,j+1) = f(i,j)$$

**A** =









### Fill-in in Sparse GE

#### Original zero entry $A_{ij}$ becomes nonzero in L or U

– Red: fill-ins (Matlab: spy())



#### Minimum Degree order: NNZ = 207



#### General sparse solver

Fill-in: O(N log(N)) Flops: O(N<sup>3/2</sup>)



## Fill-in in sparse LU





11

#### Store general sparse matrix: Compressed Row Storage (CRS)

- Store nonzeros row by row contiguously
- Example: N = 7, NNZ = 19
- **3** arrays:
  - Storage: NNZ reals, NNZ+N+1 integers





Many other data structures: "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods", R. Barrett et al.



#### Distributed input interface

- Matrices involved:
  - A, B (turned into X) input, users manipulate them
  - L, U output, users do not need to see them
- A (sparse) and B (dense) are distributed by block rows



Local A stored in Compressed Row Format



## Distributed input interface

• Each process has a structure to store local part of A Distributed Compressed Row Storage

```
typedef struct {
    int nnz_loc; // number of nonzeros in the local submatrix
    int m_loc; // number of rows local to this processor
    int fst_row; // global index of the first row
    void *nzval; // pointer to array of nonzero values, packed by row
    int *colind; // pointer to array of column indices of the nonzeros
    int *rowptr; // pointer to array of beginning of rows in nzval[]and colind[]
    } NRformat_loc;
```



## Distributed Compressed Row Storage

SuperLU\_DIST/FORTRAN/f\_5x5.f90

A is distributed on 2 processors:



- nnz\_loc = 5
- m\_loc = 2
- fst\_row = 0 // 0-based indexing
- $nzval = \{ s, u, u, l, u \}$
- colind =  $\{0, 2, 4, 0, 1\}$
- rowptr = { 0, 3, 5 }



u

р

e

u

u

nnz\_loc = 7

**P0** 

**P1** 

S

u

- $m_{loc} = 3$
- fst\_row = 2 // 0-based indexing
- nzval = { l, p, e, u, l, l, r }
- colind =  $\{1, 2, 3, 4, 0, 1, 4\}$
- rowptr = { 0, 2, 4, 7 }



## Direct solver solution phases

- 1. Preprocessing: Reorder equations to minimize fill, maximize parallelism (~10% time)
  - Sparsity structure of L & U depends on A, which can be changed by row/column permutations (vertex re-labeling of the underlying graph)
  - Ordering (combinatorial algorithms; "NP-complete" to find optimum [Yannakis '83]; use heuristics)
- 2. Preprocessing: predict the fill-in positions in L & U (~10% time)
  - Symbolic factorization (combinatorial algorithms)
- 3. Preprocessing: Design efficient data structure for quick retrieval of the nonzeros
  - Compressed storage schemes
- 4. Perform factorization and triangular solutions (~80% time)
  - Numerical algorithms (F.P. operations only on nonzeros)
  - Usually dominate the total runtime

For sparse Cholesky and QR, the steps can be separate. For sparse LU with pivoting, steps 2 and 4 must be interleaved.



# Numercial pivoting for stability

- Goal of pivoting is to control element growth in L & U for stability
  - For sparse factorizations, often relax the pivoting rule to trade with better sparsity and parallelism (e.g., threshold pivoting, static pivoting, ...)
- Partial pivoting used in dense LU, sequential SuperLU and SuperLU\_MT (GEPP)
  - Can force diagonal pivoting (controlled by diagonal threshold)
  - Hard to implement scalably for sparse factorization

#### **Relaxed pivoting strategies:**

- Static pivoting used in SuperLU\_DIST (GESP)
  - 1. Before factor, scale and permute A to maximize diagonal:  $P_r D_r A D_c = A'$
  - 2. During factor A' = LU, replace tiny pivots by  $\varepsilon \|A\|$ , w/o changing data structures for L & U
  - 3. If needed, use a few steps of iterative refinement after the first solution

#### Restricted pivoting





### Can we reduce fill? -- various ordering algorithms

• Reordering (= permutation of equations and variables)



(no fill after elimination)



## Ordering to preserve sparsity : Minimum Degree



- Local greedy strategy: minimize upper bound on fill-in at each elimination step
- Algorithm: Repeat N steps:
  - Choose a vertex with minimum degree to eliminate
  - Update the remaining graph

Fast implementation: Quotient graph, approximate degree



#### Ordering to preserve sparsity : Nested Dissection

 Model problem: discretized system Ax = b from certain PDEs, e.g., 5-point stencil on k x k grid, N = k<sup>2</sup>

- Factorization flops: O( $k^3$ ) = O( $N^{3/2}$ )

• Theorem: ND ordering gives optimal complexity in exact arithmetic [George '73, Hoffman/Martin/Rose]











# ND Ordering

- Generalized nested dissection [Lipton/Rose/Tarjan '79]
  - Global graph partitioning: top-down, divide-and-conqure
  - Best for large problems
  - Parallel codes available: ParMetis, PT-Scotch
    - First level



- $\circ$  Recurse on A and B
- Goal: find the smallest possible separator S at each level
  - Multilevel schemes:
    - Chaco [Hendrickson/Leland `94], Metis [Karypis/Kumar `95]
  - Spectral bisection [Simon et al. `90-`95, Ghysels et al. 2019-]
  - Geometric and spectral bisection [Chan/Gilbert/Teng `94]



## ND Ordering





## Ordering for LU with non-symmetric patterns

- Can use a symmetric ordering on a graph of symmetrized matrix
- Case of partial pivoting (serial SuperLU, SuperLU\_MT):
  - Use ordering based on  $A^T*A$
- Case of static pivoting (SuperLU\_DIST):
  - Use ordering based on  $A^T+A$
- Can find better ordering based solely on A, without symmetrization
  - Diagonal Markowitz [Amestoy-Li-Ng `06]
    - Similar to minimum degree, but without symmetrization
  - Hypergraph partition [Boman, Grigori, et al. `08]
    - Similar to ND on A<sup>T</sup>A, but no need to compute A<sup>T</sup>A



## Algorithm variants, codes .... depending on matrix properties

| Matrix properties                                        | Supernodal<br>(updates in-place) | Multifrontal<br>(partial updates passing to later) |
|----------------------------------------------------------|----------------------------------|----------------------------------------------------|
| Symmetric<br>Pos. Def.: Cholesky LL'<br>indefinite: LDL' | symPACK (DAG)                    | MUMPS (tree)                                       |
| Symmetric pattern,<br>non-symmetric value                | PARDISO (DAG)                    | MUMPS (tree)<br>STRUMPACK (binary tree)            |
| Non-symmetric everything                                 | SuperLU (DAG)<br>PARDISO (DAG)   | UMFPACK (DAG)                                      |

- Remarks:
  - SuperLU, MUMPS, UMFPACK can use any sparsity-reducing ordering
- Survey of sparse direct solvers (codes, algorithms, parallel capability): https://portal.nersc.gov/project/sparse/superlu/SparseDirectSurvey.pdf



#### Sparse LU: two algorithm variants

... depending on how updates are accumulated





### Supernode

Exploit dense submatrices in the factors

- Can use Level 3 BLAS
- Reduce inefficient indirect addressing (scatter/gather)
- Reduce graph traversal time using a coarser graph





## 2D distributed L & U factored matrices (internal to SuperLU)

- 2D block cyclic layout specified by user.
- Rule: process grid should be as square as possible.
  - Or, set the row dimension (*nprow*) slightly smaller than the column dimension (*npcol*).
  - For example: 2x3, 2x4, 4x4, 4x8, etc.



**MPI Process Grid** 



#### Per-rank Schur complement update







### Communication-avoiding 3D SpLU (accessible from 'pddrive3d')

[Sao, Li, Vuduc, JPDC 2019]

- For matrices from planar graph, provably asymptotic lower communication complexity:
  - Comm. volume reduced by a factor of sqrt(log(n)).
  - Latency reduced by a factor of log(n).
- Strong scale to 24,000 cores.

Compared to 2D algorithm:

- Planar graph: up to 27x faster, 30% more memory
- Non-planar graph: up to 3.3x faster, 2x more mem





 $\{\mathsf{P}_{XY}, \mathsf{P}_{7}\}$ 

#### Communication-avoiding 3D SpTRSV

#### [Liu, Ding, Wiliams, Li; SC2023]

- Communication optimization for 3D SpTRSV
  - Trade inter-grid synchronization with replicated computation
  - Sparse Allreduce operations for inter-grid communication
  - Communication tree for intra-gird communication
  - NVSHMEM for GPU-initiated one-sided communication in each 2D grid
- Strong scaling
  - New 3D CPU SpTRSV achieves up to 3.4X speedups compared to baseline 3D SpTRSV on Cori using 2048 CPU cores.
  - New 3D GPU SpTRSV achieves up to 6.5X speedups compared to new 3D CPU SpTRSV on Crusher and Perlmutter with up to 256 GPUs.







## Batched SpLU and SpTRSV on GPUs

 Batched linear systems of matrices with same sparsity pattern but different values

pdgssvx3d\_csc\_batch(&options, batchCount, m, n, Astore->nnz, nrhs, SparseMatrix\_handles, RHSptr, ldRHS, ReqPtr, CeqPtr, RpivPtr, CpivPtr,

DiagScale, F, Xptr, ldX, Berrs, &grid, &stat, &info);

Example using duplicated matrices: mpiexec -n 1 pddrive3d -r 1 -c 1 -b 10 \${matdir}/<matrix file>





## SuperLU\_DIST Instalation (CMAKE as an Example)

| 1  | mkdir build                                                 |
|----|-------------------------------------------------------------|
| 2  | cd build                                                    |
| 3  | cmake \                                                     |
| 4  | -DTPL_ENABLE_PARMETISLIB=ON   OFF \                         |
| 5  | -DTPL_ENABLE_INTERNAL_BLASLIB=OFF   ON \                    |
| 6  | -DTPL_ENABLE_LAPACKLIB=0FF   ON \                           |
| 7  | -DTPL_ENABLE_COMBBLASLIB=OFF   ON \                         |
| 8  | -DTPL_ENABLE_CUDALIB=OFF   ON \                             |
| 9  | -DTPL_ENABLE_HIPLIB=OFF   ON \                              |
| 10 | -DTPL_ENABLE_MAGMALIB=ON   OFF \                            |
| 11 | <pre>-Denable_complex16=0FF   ON \</pre>                    |
| 12 | -DXSDK_INDEX_SIZE=32   64 \                                 |
| 13 | -DTPL_ENABLE_NVSHMEM=OFF   ON \                             |
| 14 | -DBUILD_SHARED_LIBS=0FF   ON \                              |
| 15 | -DCMAKE_INSTALL_PREFIX=<> \                                 |
| 16 | -DCMAKE_C_COMPILER=< MPI C compiler> \                      |
| 17 | -DCMAKE_C_FLAGS="" \                                        |
| 18 | <pre>-DCMAKE_CXX_COMPILER=&lt; MPI C++ compiler&gt; \</pre> |
| 19 | -DCMAKE_CXX_FLAGS="" \                                      |
| 20 | -DCMAKE_Fortran_FLAGS="" \                                  |
| 21 | -DCMAKE_CUDA_FLAGS="" \                                     |
| 22 | -DHIP_HIPCC_FLAGS="" \                                      |
| 23 | -DXSDK_ENABLE_Fortran=OFF   ON \                            |
| 24 | -DCMAKE_Fortran_COMPILER=< MPI F90 compiler>                |
| 25 | -DCMAKE_CUDA_ARCHITECTURES=80                               |

use parmetis/metis for fill-in reduction ordering

- use internal or vendor blas
- Lapack needed for GPU SpTRSV
- NVIDIA GPU
- AMD GPU
- MAGMA needed for batched SpLU
- Integer type

NVSHMEM needed for multi-GPU SpTRSV



## User-controllable options in SuperLU\_DIST

For stability and efficiency, need to solve transformed linear system:

$$P_{c}(P_{r}(D_{r}A D_{c}))P_{c}^{T}P_{c}D_{c}^{-1} \mathbf{x} = P_{c}P_{r}D_{r}\mathbf{b}$$

"Options" fields with C enum constants:

- Equil: { NO, **YES** }
- RowPerm: { NOROWPERM, LargeDiag\_MC64, LargeDiag\_HWPM, MY\_PERMR }
- ColPerm: { NATURAL, MMD\_ATA, MMD\_AT\_PLUS\_A, COLAMD, METIS\_AT\_PLUS\_A, PARMETIS, ZOLTAN, MY\_PERMC }

Call set\_default\_options\_dist(&options) to set default values.



#### Runtime environment variables in SuperLU\_DIST

- export SUPERLU\_ACC\_OFFLOAD=1 | 0 # perform GPU SpLU
- export GPU3DVERSION=1 | 0 2
- export SUPERLU\_ACC\_SOLVE=0 | 1 # perform GPU SpTRSV 3
- export SUPERLU\_MAXSUP=256 # max supernode size 4
- export SUPERLU\_RELAX=64 5

- # whether to GPU offload all computations in SpLU

  - # upper bound for relaxed supernode size
- export SUPERLU\_MAX\_BUFFER\_SIZE=10000000 # buffer size in words on GPU 6
- export SUPERLU\_NUM\_LOOKAHEADS=10 7
- export SUPERLU\_NUM\_GPU\_STREAMS=1 # number of CUDA/HIP streams 8
- # lookahead window size
- export SUPERLU\_MPI\_PROCESS\_PER\_GPU=1 # number of MPIs per GPU 9



# Tips for Debugging Performance

- Check sparsity ordering
- Diagonal pivoting is preferable
  - E.g., matrix is diagonally dominant, ...
- Need good BLAS library (vendor, OpenBLAS, ATLAS)
  - May need adjust block size for each architecture
  - ( Parameters modifiable by environment variables)
    - Larger blocks better for uniprocessor
    - Smaller blocks better for parallellism and load balance
- GPTune: Statistical learning algorithms for selection of best parameters
   gptune.lbl.gov



#### SuperLU\_DIST other examples superlu\_dist/EXAMPLE

See README file (e.g. mpiexec -n 12 ./pddrive1 -r 3 -c 4 stomach.rua)

- pddrive1.c: Solve the systems with same A but different right-hand side at different times.
  - Reuse the factored form of A.
- pddrive2.c: Solve the systems with the same pattern as A.
  - Reuse the sparsity ordering.
- pddrive3.c: Solve the systems with the same sparsity pattern and similar values.
  - Reuse the sparsity ordering and symbolic factorization.
- pddrive4.c: Divide the processes into two subgroups (two grids) such that each subgroup solves a linear system independently from the other.

| ĺ | 0 | 1 |    |   |    |    |
|---|---|---|----|---|----|----|
| ł | 2 | 3 |    | _ |    |    |
|   |   |   | _4 | 5 |    |    |
|   |   |   | 6  | 7 |    |    |
| ĺ |   |   |    |   | 8  | 9  |
|   |   |   |    |   | 10 | 11 |

Block Jacobi preconditioner



## Summary: Algorithm complexity (in bigO sense)

- Dense LU: O(N<sup>3</sup>)
- Model PDEs with regular mesh, nested dissection ordering

|                                           | 2D problems<br>N = k <sup>2</sup> |             |          | 3D problems<br>N = k <sup>3</sup>    |                  |                  |
|-------------------------------------------|-----------------------------------|-------------|----------|--------------------------------------|------------------|------------------|
|                                           | Factor flops                      | Solve flops | Memory   | Factor flops                         | Solve flops      | Memory           |
| Exact sparse<br>LU                        | N <sup>3/2</sup>                  | N log(N)    | N log(N) | N <sup>2</sup>                       | N <sup>4/3</sup> | N <sup>4/3</sup> |
| STRUMPACK<br>with low-rank<br>compression | N                                 | Ν           | Ν        | N <sup>α</sup> polylog(N)<br>(α < 2) | N log(N)         | N log(N)         |


| Code             | Technique              | Scope                        | Contact         |      |  |  |
|------------------|------------------------|------------------------------|-----------------|------|--|--|
| Serial platforms | (possibly on GPU       |                              |                 |      |  |  |
| CHOLMOD          | Left-looking           | SPD                          | Davis           | [8]  |  |  |
| GLU3.0           | Left-looking           | Unsym (GPU)                  | Peng            | [36] |  |  |
| KLU              | Left-looking           | Unsym                        | Davis           | [11] |  |  |
| MA57             | Multifrontal           | Sym                          | HSL             | [19] |  |  |
| MA41             | Multifrontal           | Sym-pat                      | HSL             | [1]  |  |  |
| MA42             | Frontal                | Unsym                        | HSL             | [20] |  |  |
| MA67             | Multifrontal           | Sym                          | HSL             | [17] |  |  |
| MA48             | Right-looking          | Unsym                        | HSL             | [18] |  |  |
| Oblio            | Left/right/Multifr.    | sym. Out-core                | Dobrian         | [14] |  |  |
| SPARSE           | Right-looking          | Unsym                        | Kundert         | [32] |  |  |
| SPARSPAK         | Left-looking           | SPD Unsym OR                 | George et al    | [22] |  |  |
| SPOOLES          | Left-looking           | Sym Sym-pat OR               | Ashcraft.       | [5]  |  |  |
| SSIDS            | Multifrontal           | Sym (CPU)                    | Hogg            | [28] |  |  |
| SuperLLT         | Left looking           | SPD                          | Na              | [25] |  |  |
| SuperLLI         | Left looking           | Ungum                        | ING IN          |      |  |  |
| UMEDACK          | Multifrontal           | Unsym                        | Davia           | [12] |  |  |
| UMPPACK          | Multironta             | Unsym                        | Davis           | [8]  |  |  |
| Shared memory    | parallel machines (pos | sibly on GPU)                | 11 6 . 1        | 1.01 |  |  |
| BUSLIB-EAT       | Multifrontal           | Sym, Unsym, QR               | Ashcraft et al. | [0]  |  |  |
| Cholesky         | Left-looking           | SPD                          | Rothberg        | [31] |  |  |
| MF2              | Multifrontal           | Sym, Sym-pat, Out-core (GPU) | Lucas           | [34] |  |  |
| MA41             | Multifrontal           | Sym-pat                      | HSL             | [2]  |  |  |
| MA49             | Multifrontal           | QR                           | HSL             | [4]  |  |  |
| PanelLLT         | Left-looking           | SPD                          | Ng              | [24] |  |  |
| PARASPAR         | Right-looking          | Unsym                        | Zlatev          | [41] |  |  |
| PARDISO          | Left-Right looking     | Sym-pat                      | Schenk          | [39] |  |  |
| SPOOLES          | Left-looking           | Sym, Sym-pat                 | Ashcraft        | [5]  |  |  |
| SuiteSparseQR    | Multifrontal           | Rank-revealing QR            | Davis           | [10] |  |  |
| SuperLU_MT       | Left-looking           | Unsym                        | Li              | [13] |  |  |
| TAUCS            | Left/Multifr.          | Sym, Unsym, Out-core         | Toledo          | [7]  |  |  |
| WSMP             | Multifrontal           | SPD, Unsym                   | Gupta           | [25] |  |  |
| Distributed mem  | ory parallel machines  |                              |                 |      |  |  |
| Clique           | Multifrontal           | Sym (no pivoting)            | Poulson         | [37] |  |  |
| MF2              | Multifrontal           | Sym, Sym-pat, Out-core, GPU  | Lucas           | [34] |  |  |
| DSCPACK          | Multifrontal           | SPD                          | Raghavan        | [26] |  |  |
| MUMPS            | Multifrontal           | Sym, Sym-pat                 | Amestov         | [3]  |  |  |
| PARDISO          | Left-Right looking     | Sym-pat, Unsym               | Schenk          | [39] |  |  |
| PaStiX           | Left-Right looking     | SPD, Sym, Sym-pat            | Ramet           | [29] |  |  |
| PSPASES          | Multifrontal           | SPD                          | Gunta           | 23   |  |  |
| SPOOLES          | Left-looking           | Sym. Sym-pat. OR             | Ashcraft        | 151  |  |  |
| STRUMPACK        | Multifrontal           | Unsym Sym-pat (CPII)         | Chysels         | [40] |  |  |
| SuperLU DIST     | Right-looking          | Unsym (GPU)                  | Li              | [32] |  |  |
| SUMPACK          | Left-Right hoking      | SPD                          | Incomelin       | [30] |  |  |
| SI               | Right looking          | Unarm                        | Vang            | [01] |  |  |
| WEMD             | Multifaantal           | SDD Ungang                   | Cunto           | [07] |  |  |
| WOMP             | Multirontal            | SPD, Unsym                   | Gupta           | 25   |  |  |

Table 1: Software to solve sparse linear systems using direct methods.

# Survey of sparse direct solver codes

# portal.nersc.gov/project/sparse/superlu/Sparse DirectSurvey.pdf



# References

 Short course, "Factorization-based sparse solvers and preconditioners", 4th Gene Golub SIAM Summer School,

2013.https://archive.siam.org/students/g2s3/2013/index.html

- 10 hours lectures, hands-on exercises
- Extended summary: <u>http://crd-legacy.lbl.gov/~xiaoye/g2s3-summary.pdf</u>
  (in book "Matrix Functions and Matrix Equations", <u>https://doi.org/10.1142/9590</u>)
- SuperLU: portal.nersc.gov/project/sparse/superlu
  - Users Guide, papers, FAQ, code documentation, ...



**Rank Structured Solvers for Dense Linear Systems** 



# **Hierarchical Matrix Approximation**

 $\mathcal{H}$ -matrix representation [1]

• Data-sparse, rank-structured, compressed

Hierarchical/recursive  $2 \times 2$  matrix blocking, with blocks either:

- Low-rank:  $A_{IJ} \approx UV^{\top}$
- Hierarchical
- Dense (at lowest level)

Use cases:

- Boundary element method for integral equations
- Cauchy, Toeplitz, kernel, covariance, ... matrices
- Fast matrix-vector multiplication
- *H*-LU decomposition
- Preconditioning







# Admissibility Condition

- Row cluster  $\sigma$
- Column cluster  $\tau$
- $\sigma \times \tau$  is compressible  $\Leftrightarrow$

 $\frac{\max(\operatorname{diam}(\sigma),\operatorname{diam}(\tau))}{\operatorname{dist}(\tau,\sigma)} \leq \eta$ 

- $\mathrm{diam}(\sigma)$ : diameter of physical domain corresponding to  $\sigma$
- dist( $\sigma, \tau$ ): distance between  $\sigma$  and  $\tau$
- · Weaker interaction between clusters leads to smaller ranks
- Intuitively larger distance, greater separation, leads to weaker interaction
- Need to cluster and order degrees of freedom to reduce ranks



Hackbusch, W., 1999. A sparse matrix arithmetic based on *H*-matrices. part i: Introduction to *H*-matrices. Computing, 62(2), pp.89-108.





# HODLR: Hierarchically Off-Diagonal Low Rank

Weak admissibility

```
\sigma \times \tau is compressible \Leftrightarrow \sigma \neq \tau
```

Every off-diagonal block is compressed as low-rank, even interaction between neighboring clusters (no separation)

Compared to more general  $\mathcal{H}$ -matrix

- Simpler data-structures: same row and column cluster tree
- More scalable parallel implementation
- Good for 1D geometries, e.g., boundary of a 2D region discretized using BEM or 1D separator
- Larger ranks





# HSS: Hierarchically Semi Seperable

- Weak admissibility
- Off-diagonal blocks

$$A_{\sigma,\tau} \approx U_{\sigma} B_{\sigma,\tau} V_{\tau}^{\top}$$

Nested bases

$$U_{\sigma} = \begin{bmatrix} U_{\nu_1} & 0\\ 0 & U_{\nu_2} \end{bmatrix} \hat{U}_{\sigma}$$

with  $\nu_1$  and  $\nu_2$  children of  $\sigma$  in the cluster tree.

At lowest level

$$U_{\sigma} \equiv \hat{U}_{\sigma}$$

- Store only  $\hat{U}_{\sigma}$ , smaller than  $U_{\sigma}$
- Complexity  $\mathcal{O}(N) \leftrightarrow \mathcal{O}(N \log N)$  for HODLR
- HSS is special case of  $\mathcal{H}^2 {:} \ \mathcal{H}$  with nested bases

$$\begin{bmatrix} D_0 & U_0 B_{0,1} V_1^* \\ U_1 B_{1,0} V_0^* & D_1 \\ \\ U_5 B_{5,2} V_2^* & D_3 \\ \\ U_4 B_{4,3} \end{bmatrix}$$







# HSS: Hierarchically Semi Seperable

- Weak admissibility
- Off-diagonal blocks

$$A_{\sigma,\tau} \approx U_{\sigma} B_{\sigma,\tau} V_{\tau}^{\top}$$

Nested bases

$$U_{\sigma} = \begin{bmatrix} U_{\nu_1} & 0\\ 0 & U_{\nu_2} \end{bmatrix} \hat{U}_{\sigma}$$

with  $\nu_1$  and  $\nu_2$  children of  $\sigma$  in the cluster tree.

At lowest level

$$U_{\sigma} \equiv \hat{U}_{\sigma}$$

- Store only  $\hat{U}_{\sigma}$ , smaller than  $U_{\sigma}$
- Complexity  $\mathcal{O}(N) \leftrightarrow \mathcal{O}(N \log N)$  for HODLR
- HSS is special case of  $\mathcal{H}^2 {:}~ \mathcal{H}$  with nested bases

$$\begin{bmatrix} D_0 & U_0 B_{0,1} V_1^* \\ U_1 B_{1,0} V_0^* & D_1 \\ \begin{bmatrix} U_3 & 0 \\ 0 & U_4 \end{bmatrix} \hat{U}_5 B_{5,2} \hat{V}_2^* \begin{bmatrix} V_0^* & 0 \\ 0 & V_1^* \end{bmatrix}$$

$$\begin{bmatrix} U_0 & 0 \\ 0 & U_1 \end{bmatrix} \hat{U}_2 B_{2,5} \hat{V}_5^* \begin{bmatrix} V_3^* & 0 \\ 0 & V_4^* \end{bmatrix} \\ D_3 & U_3 B_{3,4} V_4^* \\ U_4 B_{4,3} V_3^* & D_4 \end{bmatrix}$$



# BLR: Block Low Rank [1, 2]

- Flat partitioning (non-hierarchical)
- Weak or strong admissibility
- Larger asymptotic complexity than  $\mathcal{H}$ , HSS, ...
- Works well in practice



Mary, T. (2017). Block Low-Rank multifrontal solvers: complexity, performance, and scalability. (Doctoral dissertation).

Amestoy, Patrick, et al. (2015). *Improving multifrontal methods by means of block low-rank representations*. SISC 37.3 : A1451-A1474.



#### **Data-Sparse Matrix Representation Overview**



- Partitioning: hierarchical (*H*, HODLR, HSS) or flat (BLR)
- Admissibility: weak (HODLR, HSS) or strong  $(\mathcal{H}, \mathcal{H}^2)$
- Bases: nested (HSS,  $\mathcal{H}^2)$  or not nested (HODLR,  $\mathcal{H},$  BLR)



# Fast Multipole Method [1]

Particle methods like Barnes-Hut and FMM can be interpreted algebraically using hierarchical matrix algebra

- Barnes-Hut  $\mathcal{O}(N \log N)$
- Fast Multipole Method  $\mathcal{O}(N)$





Barnes-Hut



FMM



Greengard, L., and Rokhlin, V. *A fast algorithm for particle simulations.* Journal of computational physics 73.2 (1987): 325-348.

# **Butterfly Decomposition**

Complementary low rank property: sub-blocks of size  $\mathcal{O}(N)$  are low rank:



Multiplicative decomposition:



- Multilevel generalization of low rank decomposition
- Based on FFT ideas, motivated by high-frequency problems



# **Butterfly Decomposition Intuition [1]**



Michielssen, E., and Boag, A. *Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems.* Microwave and Optical Technology Letters 7.17 (1994): 790-795.



#### HODBF: Hierarchically Off-Diagonal Butterfly



- HODLR but with low rank replaced by Butterfly decomposition
- Reduces ranks of large off-diagonal blocks



# Low Rank Approximation Techniques

Traditional approaches need entire matrix

- Truncated Singular Value Decomposition (TSVD):  $A \approx U \Sigma V^T$ 
  - Optimal, but expensive
- Column Pivoted QR:  $AP \approx QR$ 
  - Less accurate than TSVD, but cheaper

#### Adaptive Cross Approximation

- No need to compute every element of the matrix
- Requires certain assumptions on input matrix
- Left-looking LU with rook pivoting

#### Randomized algorithms [1]

- Fast matrix-vector product:  $S = A\Omega$ Reduce dimension of A by random projection with  $\Omega$
- E.g., operator is sparse or rank structured, or the product of sparse and rank structured
- Halko, N., Martinsson, P.G., Tropp, J.A. (2011). *Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.* SIAM Review, 53(2), 217-288.



#### Block Low Rank on GPU

Schur complement updates into dense block Aij:

$$A_{ij} \leftarrow A_{ij} + \sum_{k} A_{ik} A_{kj}$$
$$\leftarrow A_{ij} + \sum_{k} (U_{ik} V_{ik}) (U_{kj} V_{kj})$$

For  $k = 1 \dots$ :

batch 1

$$\hat{T}_{ij} = V_{ik} U_{kj} \quad \forall i, j$$

• batch 2 (depending on the rank)

$$\tilde{T}_{ij} = \begin{cases} U_{ik}\hat{T}_{ij} & if.. \\ \hat{T}_{ij}V_{kj} & else \end{cases} \quad \forall i,j$$

• batch 3

$$A_{ij} \leftarrow A_{ij} + \begin{cases} \tilde{T}_{ij} V_{kj} & if... \\ U_{ik} \tilde{T}_{ij} & else \end{cases} \quad \forall i,j$$

 $(3 \times \texttt{magmablas\_dgemm\_vbatched})$ 



# **Block Low Rank on GPU**

Device allocations, data transfers

• cudaMalloc/cudaFree per BLR front

Low rank compression on GPU

- SVD (cusolverDnDgesvdj/magma\_dgesvd) is expensive
- ARA (Adaptive Rand. Approx.) from KBLAS is much faster

BLR algorithmic variants

- FSUC (Factor/Solve/Update/Compress), FSCU, FCSU, CFSU
- LUAR (Low-rank Update Accumulation and Recompression)
- Matrix-free ARA

$$\left(A_{ij} + \sum_{k} U_{ik} \left(V_{ik} U_{kj}\right) V_{kj}\right) \mathbf{R} = A_{ij} \mathbf{R} + \sum_{k} U_{ik} \left(V_{ik} \left(U_{kj} \left(V_{kj} \mathbf{R}\right)\right)\right)$$

- ACA (Adaptive Cross Approx.), blocked ACA
- Pivoting

Mary, T. (2017). Block Low-Rank multifrontal solvers: complexity, performance, and scalability. (Doctoral dissertation).



**Approximate Multifrontal Factorization** 



#### Sparse Multifrontal Solver/Preconditioner with Rank-Structured Approximations

 $\boldsymbol{L}$  and  $\boldsymbol{U}$  factors, after nested-dissection ordering, compressed blocks in blue



Only apply rank structured compression to largest fronts (dense sub-blocks), keep the rest as regular dense



# High Frequency Helmholtz and Maxwell

Regular  $k^3 = N$  grid, fixed number of discretization points per wavelength





Indefinite Maxwell, using MFEM



$$\left(\sum_{i} \rho(\mathbf{x}) \frac{\partial}{\partial x_{i}} \frac{1}{\rho(\mathbf{x})} \frac{\partial}{\partial x_{i}}\right) p(\mathbf{x}) + \frac{\omega^{2}}{\kappa^{2}(\mathbf{x})} p(\mathbf{x}) = -f(\mathbf{x})$$





$$\left(\sum_{i} \rho(\mathbf{x}) \frac{\partial}{\partial x_{i}} \frac{1}{\rho(\mathbf{x})} \frac{\partial}{\partial x_{i}}\right) p(\mathbf{x}) + \frac{\omega^{2}}{\kappa^{2}(\mathbf{x})} p(\mathbf{x}) = -f(\mathbf{x})$$





$$\left(\sum_{i} \rho(\mathbf{x}) \frac{\partial}{\partial x_{i}} \frac{1}{\rho(\mathbf{x})} \frac{\partial}{\partial x_{i}}\right) p(\mathbf{x}) + \frac{\omega^{2}}{\kappa^{2}(\mathbf{x})} p(\mathbf{x}) = -f(\mathbf{x})$$





$$\left(\sum_{i} \rho(\mathbf{x}) \frac{\partial}{\partial x_{i}} \frac{1}{\rho(\mathbf{x})} \frac{\partial}{\partial x_{i}}\right) p(\mathbf{x}) + \frac{\omega^{2}}{\kappa^{2}(\mathbf{x})} p(\mathbf{x}) = -f(\mathbf{x})$$





## **BLR Preconditioning**

|               |               |               | no compression |       |       |       | $BLR(\varepsilon_{\rm rel} = 10^{-2})$ |       |     |      |       |       |     |      |
|---------------|---------------|---------------|----------------|-------|-------|-------|----------------------------------------|-------|-----|------|-------|-------|-----|------|
|               |               |               |                |       |       | ~~    |                                        |       |     |      |       |       |     |      |
|               |               |               | CF             | 0     | A1    | 00    |                                        | CPU   | J   |      |       | A10   | 00  |      |
|               | N             | nnz           | fact           | solve | fact  | solve | fact                                   | solve |     | comp | fact  | solve |     | comp |
| matrix        | $\times 10^3$ | $\times 10^3$ | (sec)          | (sec) | (sec) | (sec) | (sec)                                  | (sec) | its | (%)  | (sec) | (sec) | its | (%)  |
| Serena        | 1,391         | 64,531        | 229.6          | 1.07  | 17.9  | 1.2   | 76.4                                   | 5.2   | 10  | 34.4 | 17.3  | 3.4   | 6   | 39.7 |
| Geo_1438      | 1,437         | 63,156        | 151.9          | 1.04  | 12.7  | 1.0   | 60.4                                   | 7.2   | 13  | 45.6 | 16.9  | 4.5   | 7   | 54.2 |
| Hook_1498     | 1,498         | 60,917        | 76.1           | 0.70  | 7.4   | 0.7   | 29.7                                   | 14.5  | 35  | 46.7 | 12.5  | 4.1   | 10  | 52.0 |
| ML_Geer       | 1,504         | 110,879       | 23.6           | 0.51  | 2.0   | 0.3   | 11.5                                   | 10.1  | 27  | 64.6 | 8.7   | 4.0   | 11  | 66.6 |
| Transport     | 1,602         | 23,500        | 40.9           | 0.63  | 3.2   | 0.3   | 21.3                                   | 10.8  | 25  | 52.0 | 8.8   | 4.5   | 11  | 58.1 |
| Flan_1565     | 1,565         | 117,406       | 32.8           | 0.7   | 3.0   | 0.4   | 20.5                                   | 40.6  | 86  | 62.3 | 12.3  | 25.0  | 54  | 65.7 |
| Cube_Coup_dt0 | 2,164         | 129,133       | OOM            | OOM   | 62.1  | 2.4   | 223.9                                  | 18.1  | 18  | 31.0 | 46.0  | 7.3   | 7   | 38.5 |

Table: Multifrontal solver with BLR compression tolerance  $\varepsilon = 10^{-2}$ .

GMRES(30) relative tolerance is  $10^{-6}$ .

CPU uses 8 cores of AMD EPYC 7763.

PVC: Intel Data Center GPU Max Series ('Ponte Vecchio').

cuDSS: new NVIDIA sparse direct solver https://developer.nvidia.com/cudss.



# **BLR Preconditioning**

|               |               |               | no compression |       |       |       |       |       |       |       |
|---------------|---------------|---------------|----------------|-------|-------|-------|-------|-------|-------|-------|
|               |               |               |                |       |       |       | cuE   | )SS   |       |       |
|               |               |               | CF             | טי    | A100  |       | A100  |       | PVC   |       |
|               | N             | nnz           | fact           | solve | fact  | solve | fact  | solve | fact  | solve |
| matrix        | $\times 10^3$ | $\times 10^3$ | (sec)          | (sec) | (sec) | (sec) | (sec) | (sec) | (sec) | (sec) |
| Serena        | 1,391         | 64,531        | 229.6          | 1.07  | 17.9  | 1.2   | 48.2  | 0.4   | 14.3  | 0.6   |
| Geo_1438      | 1,437         | 63,156        | 151.9          | 1.04  | 12.7  | 1.0   | 33.0  | 0.3   | 10.6  | 0.6   |
| Hook_1498     | 1,498         | 60,917        | 76.1           | 0.70  | 7.4   | 0.7   | 15.4  | 0.2   | 6.5   | 0.4   |
| ML_Geer       | 1,504         | 110,879       | 23.6           | 0.51  | 2.0   | 0.3   | 5.4   | 0.1   | 4.5   | 0.3   |
| Transport     | 1,602         | 23,500        | 40.9           | 0.63  | 3.2   | 0.3   | 10.8  | 0.2   | 5.0   | 0.3   |
| Flan_1565     | 1,565         | 117,406       | 32.8           | 0.7   | 3.0   | 0.4   | 8.8   | 0.1   | 5.7   | 0.4   |
| Cube_Coup_dt0 | 2,164         | 129,133       | OOM            | OOM   | 62.1  | 2.4   | 80.7  | 0.6   | 23.2  | 0.9   |

Table: Multifrontal solver with BLR compression tolerance  $\varepsilon = 10^{-2}$ .

GMRES(30) relative tolerance is  $10^{-6}$ .

CPU uses 8 cores of AMD EPYC 7763.

PVC: Intel Data Center GPU Max Series ('Ponte Vecchio').

cuDSS: new NVIDIA sparse direct solver https://developer.nvidia.com/cudss.



#### Combining Block Low Rank and Hierarchically Off-Diagonal Butterfly Rank-structured compression of largest dense blocks in the multifrontal/assembly tree

- Largest: HOD-BF
- Medium: BLR
- Smaller: dense





#### High Frequency 3D Helmholtz – BLR



Right/left-looking BLR have different communication patterns Hybrid BLR reduces peak memory by not forming dense front



High Frequency 3D Helmholtz – BLR



Right/left-looking BLR have different communication patterns Hybrid BLR reduces peak memory by not forming dense front



#### High Frequency 3D Helmholtz – HODBF & BLR & ZFP





#### High Frequency 3D Helmholtz – HODBF & BLR & ZFP





#### Singularly Perturbed PDE – HODBF & BLR & ZFP

$$-\delta^2 \Delta u + u = f$$
, on  $\Omega = (0,1)^3$ , and  $u(\partial \Omega) = g$ ,





#### Singularly Perturbed PDE – HODBF & BLR & ZFP

 $-\delta^2 \Delta u + u = f$ , on  $\Omega = (0,1)^3$ , and  $u(\partial \Omega) = g$ ,





#### Software: ButterflyPACK

- Butterfly
- Hierarchically Off-Diagonal Low Rank (HODLR)
- Hierarchically Off-Diagonal Butterfly (HODBF)
- Hierarchical matrix format (*H*)
  - Limited parallelism
- Fast compression, using randomization
- Fast multiplication, factorization & solve
- Fortran2008, MPI, OpenMP

https://github.com/liuyangzhuan/ButterflyPACK



#### Software: STRUMPACK STRUctured Matrix PACKage

- Fully algebraic solvers/preconditioners
- Sparse direct solver (multifrontal LU factorization)
- Approximate sparse factorization preconditioner
- Dense
  - HSS: Hierarchically Semi-Separable
  - BLR: Block Low Rank
  - ButterflyPACK integration/interface:
    - Butterfly
    - HODLR
    - HODBF
- C++, MPI + OpenMP + CUDA, real & complex, 32/64 bit integers
- BLAS, LAPACK, Metis
- Optional: MPI, ScaLAPACK, ParMETIS, (PT-)Scotch, cuBLAS/cuSOLVER, SLATE, ZFP

https://github.com/pghysels/STRUMPACK https://portal.nersc.gov/project/sparse/strumpack/master/



#### Other Available Software

| HiCMA           | https://github.com/ecrc/hicma                                           |
|-----------------|-------------------------------------------------------------------------|
| HLib            | http://www.hlib.org/                                                    |
| HLibPro         | https://www.hlibpro.com/                                                |
| H2Lib           | http://www.h2lib.org/                                                   |
| НАСАрК          | https://github.com/hoshino-UTokyo/hacapk-gpu                            |
| MUMPS<br>PaStiX | http://mumps.enseeiht.fr/<br>https://gitlab.inria.fr/solverstack/pastix |
| ExaFMM          | http://www.bu.edu/exafmm/                                               |

See also:

https://github.com/gchavez2/awesome\_hierarchical\_matrices


**STRUMPACK Hands-On Session** 



EXASCALE COMPUTING PROJECT

## HODLR Compression of Toeplitz Matrix $T(i, j) = \frac{1}{1+|i-j|}$

track-5-numerical/rank\_structured\_strumpack/build/testHODLR

- See track-5-numerical/rank\_structured\_strumpack/README
- Get a compute node:

```
qsub -I -l select=1 -l filesystems=home:eagle -l walltime
```

• Set OpenMP threads:

export OMP\_NUM\_THREADS=1

• Run example:

mpiexec -n 1 ./build/testHODLR 2000

- With description of command line parameters: mpiexec -n 1 ./build/testHODLR 2000 --help
- Vary leaf size (smallest block size) and tolerance:

mpiexec -n 1 ./build/testHODLR 2000 --structured\_rel\_tol 1e-4 --structured\_leaf\_size 10
mpiexec -n 1 ./build/testHODLR 2000 --structured\_rel\_tol 1e-4 --structured\_leaf\_size 12

• Vary number of MPI processes:

mpiexec -n 12 ./build/testHODLR 2000 --structured\_rel\_tol 1e-8 --structured\_leaf\_size :
mpiexec -n 12 ./build/testHODLR 2000 --structured\_rel\_tol 1e-8 --structured\_leaf\_size :





## Solve a Sparse Linear System with Matrix pde900.mtx track-5-numerical/rank\_structured\_strumpack/build/testMMdouble{MPIDist}

- See track-5-numerical/rank\_structured\_strumpack/README
- Set OpenMP threads: export OMP\_NUM\_THREADS=1
- Run example:

```
mpiexec -n 1 ./build/testMMdouble pde900.mtx
```

- With description of command line parameters: mpiexec -n 1 ./build/testMMDouble pde900.mtx --help
- Enable/disable GPU off-loading:

```
mpiexec -n 1 ./build/testMMDouble pde900.mtx --sp_disable_gpu
```

• Vary number of MPI processes:

mpiexec -n 1 ./build/testMMdouble pde900.mtx
mpiexec -n 12 ./build/testMMdoubleMPIDist pde900.mtx

• Other sparse matrices, in matrix market format: NIST Matrix Market: https://math.nist.gov/MatrixMarket SuiteSparse: http://faculty.cse.tamu.edu/davis/suitesparse.html





## Solve 3D Poisson Problem

track-5-numerical/rank\_structured\_strumpack/build/testPoisson3d{MPIDist}

- See track-5-numerical/rank\_structured\_strumpack/README
- Get a compute node:

```
qsub -I -l select=1 -l filesystems=home:eagle -l walltime=1:00:00 -q ATPESC -A ATPESC2024
```

- Set OpenMP threads: export OMP\_NUM\_THREADS=1
- Solve  $40^3$  Poisson problem:

```
mpiexec -n 1 ./build/testPoisson3d 40 --help --sp_disable_gpu
```

• Enable BLR compression:

```
mpiexec -n 1 ./build/testPoisson3d 40 --sp_compression BLR --help
mpiexec -n 1 ./build/testPoisson3d 40 --sp_compression BLR --blr_rel_tol 1e-2
mpiexec -n 1 ./build/testPoisson3d 40 --sp_compression BLR --blr_rel_tol 1e-4
mpiexec -n 1 ./build/testPoisson3d 40 --sp_compression BLR --blr_leaf_size 128
mpiexec -n 1 ./build/testPoisson3d 40 --sp_compression BLR --blr_leaf_size 256
```

• Parallel, with HSS/HODLR compression:

