
ATPESC Numerical Software Track

LLNL-PRES-852979

Time Integration
(with hands-on examples using SUNDIALS)

Presented to

ATPESC 2024 Participants

David J. Gardner

Lawrence Livermore National Laboratory

SUNDIALS Developer

August 6, 2024

ATPESC 20242 LLNL-PRES-852979

Time integrators in the HPC “landscape”

Most models of physical systems are formulated in terms of the rate of change of some variable, e.g.

— Newton’s 2nd law:

— Chemical rate equations:

▪ Time integrators are used to track changes in solutions as time proceeds, allowing studies of the

‘evolution’ of a model.

”Sawtooth” reconnection in a tokamak (NIMROD)

ATPESC 20243 LLNL-PRES-852979

Time integrators in the HPC “landscape”

Unlike spatial discretization or visualization that live at the bottom/top of the software stack,

respectively, time integrators typically live in the “middle.” Consider some PDE systems,

▪ Using a “method of lines” approach, after spatial discretization, one considers the resulting

ODE/DAE system:

— 𝑦 contains all discretized solution components; 𝑓 or 𝐹 encodes the physics & spatial

discretization

ATPESC 20244 LLNL-PRES-852979

Time integrator overview

▪ Let 𝑦𝑛 ≈ 𝑦 𝑡𝑛 and 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡𝑛, we only compute the solution at the finite set of times 𝑡𝑛 𝑛=0…𝑁

▪ A “time marching” scheme computes these time-evolved solutions using a prescribed update formula:

e.g., explicit Euler, 𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡𝑛𝑓(𝑡𝑛, 𝑦𝑛) and implicit Euler, 𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡𝑛𝑓(𝑡𝑛+1, 𝑦𝑛+1)

▪ Time integrator types (explicit, implicit, IMEX):

— If Φ depends on 𝑦𝑛+1 then the method is implicit, and requires a nonlinear solve of the form

— If Φ does not depend on 𝑦𝑛+1 then the method is explicit, in that the updated solution may be

explicitly constructed using known data

— Implicit-explicit (IMEX) methods arise when only some parts of Φ depend on 𝑦𝑛+1

— Multirate methods use different time step sizes Δ𝑡𝑛 ≫ 𝛿𝑡𝑛 to evolve separate problem components

𝑦𝑛+1 = Φ(Δ𝑡𝑛, 𝑦𝑛+1, 𝑦𝑛, ⋯)

𝑭 𝑦 ≡ 𝑦 − Φ Δ𝑡𝑛, 𝑦, 𝑦𝑛, ⋯ = 0

ATPESC 20245 LLNL-PRES-852979

Time integrator overview (continued)

▪ Time integration methods have multiple mechanisms for achieving increased accuracy:

— “One-step” methods use multiple internal stages per step [Runge-Kutta, Rosenbrock]

– More work per-step; amenable to problems with spatial adaptivity & hyperbolic effects

— “Multistep” methods retain a longer history of previous solutions [Adams-Bashforth, BDF]

– Less work per-step; amenable to problems with strong reaction and diffusion effects

▪ Linear stability: a method is numerically stable if for a desired Δ𝑡𝑛, roundoff error stays “controlled”

throughout the simulation (vs growing out of control). For a brief refresher, see here

— “A-stable”: linearly stable no matter the Δ𝑡𝑛 – this is only possible with implicit methods1

— Otherwise, the method has a maximum stable step size Δ𝑡𝑛 for any given problem (in PDEs, this is

frequently given by the CFL condition, wherein Δ𝑡𝑛 ∝ Δ𝑥 or Δ𝑡𝑛 ∝ Δ𝑥2)

— Stability ≠ accuracy – just because a solution does not blow up, it is not necessarily accurate

1Exponential methods are explicit and may be A-stable, but require significantly more work per-step than traditional

explicit methods.

ATPESC 20246 LLNL-PRES-852979

Choosing between explicit and implicit methods

▪ IMEX: a bit of both – one chooses the splitting to balance “cheaper” algebraic solvers and stability

▪ “Stiffness” helps us choose: “The stepsize needed to maintain stability of the forward Euler method is

much smaller than that required to represent the solution accurately.” (Ascher and Petzold, 1998)

— Depends on Jacobian eigenvalues, system dimension, accuracy requirements, length of simulation

— For stability, stiff problems generally require implicit or IMEX methods, with robust implicit solvers

▪ DAEs nearly always require implicit methods to maintain stability due to the algebraic constraint

▪ Multirate methods may be preferable if the “slow” operator is much more costly than the “fast”

Explicit Methods Implicit Methods

+ easy to conceptualize

+ easy to code

+ no algebraic solvers required

− stability limits on step sizes

− tracks fastest dynamics

+ less/nonexistent stability limits

+ steps over fastest dynamics

− requires algebraic solvers

− solvers generally couple all solution unknowns

− increased code complexity

ATPESC 20247 LLNL-PRES-852979

Adaptive time-step selection

▪ Stability alone should never dictate the time steps used in an application

▪ Given a maximum stable step, adaptive methods select Δ𝑡𝑛 based on a desired accuracy:

— At each internal step, computes both the solution and an estimate of the error introduced

in that step

— If that local truncation error is sufficiently small, the step is accepted; otherwise a new step

size is chosen and the step is recomputed

— Advanced “error controllers” adapt these step sizes to meet a variety of objectives:

• minimize failed steps

• maximize step sizes

• maintain smooth transitions in the step sizes as integration proceeds

▪ Temporal adaptivity can lead to much more efficient (and accurate) results

ATPESC 20248 LLNL-PRES-852979

▪ SUNDIALS integrators consider initial-value problems of a variety of types:

— Standard IVP [CVODE]:

— Linearly-implicit, split [ARKODE]:

— Multirate [ARKODE]:

— Differential-algebraic form [IDA]:

▪ By “solve” we adapt time steps (and/or method order) to meet user-specified tolerances:

— is the estimated temporal error in the time step

— is the previous time-step solution

— encodes the desired relative solution accuracy (number of significant digits)

— is the “noise” level for any solution component (protects against)

“Solving” Initial-Value Problems with SUNDIALS

ሶ𝑦 𝑡 = 𝑓 𝑡, 𝑦 𝑡 , 𝑦 𝑡0 = 𝑦0

𝑀 𝑡 ሶ𝑦 𝑡 = 𝑓𝐸 𝑡, 𝑦 𝑡 + 𝑓𝐼 𝑡, 𝑦 𝑡 , 𝑦 𝑡0 = 𝑦0

ሶ𝑦 𝑡 = 𝑓𝐹 𝑡, 𝑦 𝑡 + 𝑓𝑆 𝑡, 𝑦 𝑡 , 𝑦 𝑡0 = 𝑦0

𝐹 𝑡, 𝑦 𝑡 , ሶ𝑦 𝑡 = 0, 𝑦 𝑡0 = 𝑦0, ሶ𝑦 𝑡0 = ሶ𝑦0

ATPESC 20249 LLNL-PRES-852979

▪ PETSc’s TS module provides a unified interface for implicit, explicit, & IMEX ODEs and DAEs:

— 𝐹(𝑡, 𝑦, ሶ𝑦) – stiff portion; 𝐺(𝑡, 𝑦) – nonstiff portion

▪ Trilinos includes both an older Rythmos module for ODEs and DAEs:

As well as a newer Tempus module for ODEs:

— Top: 𝐺(𝑡, 𝑦) stiff, 𝐹(𝑡, 𝑦) nonstiff; Bottom: Newmark integrators for second-order ODEs

▪ All perform temporal adaptivity, and provide a range of algebraic solvers for implicit methods

Other DOE Time Integration Packages

ATPESC 202410 LLNL-PRES-852979

Implicit methods require a nonlinear solver for 𝑭(𝑦) = 0

The PETSc team is presenting on nonlinear solvers in sessions parallel to this one, so I’ll only

give a high-level idea, leaving details for them

Nonlinear solvers must be iterative, since few nonlinear equations admit analytical solutions

The two largest classes of nonlinear solvers are fixed-point vs Newton-based

▪ FP typically use only 𝑭 and converge linearly, but may have a large domain of convergence

▪ Newton uses both 𝑭 and the Jacobian 𝐽(𝑦) ≡
𝜕𝑭(𝑦)

𝜕𝑦
 (or an approximation to it):

— Each iteration requires a linear solve with the matrix 𝐽 (see linear solver talks)

— Typically converge quadratically (or super-linearly, depending on how well 𝐽 is solved)

— For most problems, Newton is algorithmically scalable – as the mesh is refined, the

number of iterations remains fixed, so scalability hinges on the linear system solver

ATPESC 202411 LLNL-PRES-852979

Why use a solver library (instead of “rolling your own”)

▪ Many applications (particularly early on) implement their own numerical methods to remove software

dependencies. While functional, the methods may be overly simplistic (e.g., straight from “Numerical

Recipes”) or buggy, may not leverage modern hardware, and/or omit advanced “expert” features.

▪ Solver libraries, on the other hand, are typically bug-free, heavily tested, and admit numerous benefits:

— Time adaptivity – provide approximate solutions with requested accuracy and minimal work

— Seamless integration with scalable algebraic solver libraries for implicit and IMEX problems

— Native support for cutting-edge GPU hardware via CUDA, HIP, oneAPI, Kokkos, RAJA, …

— Advanced options for later use: temporal root-finding, sensitivity analysis, solution constraints, …

▪ For more information:

— SUNDIALS: https://computing.llnl.gov/projects/sundials

— PETSc: https://www.mcs.anl.gov/petsc/

— Trilinos: https://trilinos.github.io/

https://computing.llnl.gov/projects/sundials
https://www.mcs.anl.gov/petsc/
https://trilinos.github.io/

ATPESC 202412 LLNL-PRES-852979

Hands-on lessons

Switch over to web-based hands-on lesson instructions – webpage

Agenda:

1. Explicit time integration (HandsOn1.exe)

2. Implicit / IMEX time integration (HandsOn2.exe)

3. Preconditioning (HandsOn3.exe)

https://xsdk-project.github.io/MathPackagesTraining2024/lessons/time_integrators_sundials

ATPESC 202413 LLNL-PRES-852979

Take Away Messages

▪ SUNDIALS, PETSc, and Trilinos provide a wide variety of high quality, scalable ODE/DAE
integrators and nonlinear solvers

▪ PDEs can be converted to ODEs/DAEs via spatial semi-discretization, and then integrated using
ODE/DAE libraries

▪ Stiffness is an important characteristic of ODEs, and helps dictate which methods are appropriate
for any given problem

▪ Adaptive time-stepping provides an inexpensive means to combine algorithmic efficiency and
solution quality

▪ Scalability of implicit and IMEX methods hinges on selection of robust and scalable algebraic
solvers; while Newton methods can handle nonlinearities, robustness and scalability of the inner
linear solver is critical (and often problem-dependent)

sundials.readthedocs.io

github.com/LLNL/sundials

computing.llnl.gov/projects/sundials

ATPESC 202415 LLNL-PRES-852979

Linear Stability – A brief refresher

A fundamental question for any time integration method is how well it handles errors due to floating-point

roundoff. To this end, we consider the simple “Dahlquist” test problem:

▪ Here, y corresponds to the normalized floating-point error, and to the largest eigenvalue of the

Jacobian of a prototypical ODE right-hand side function (assumed to satisfy).

▪ The true solution to this problem is just , which decays to zero as , indicating that

roundoff errors should decay as the simulation proceeds.

▪ The numerical method, on the other hand, computes approximate solutions

that may (or may not) similarly satisfy the similar requirement that .

▪ Generally, this decay in numerical roundoff error will only occur for specific values of . We

therefore define the stability region for a method as

ATPESC 202416 LLNL-PRES-852979

Linear Stability Example – Explicit Euler

Consider the explicit Euler method:

For the Dahlquist test problem, this becomes

which only decays to zero if .

Hence the explicit Euler linear stability region is

From https://en.wikipedia.org/wiki/Euler_method

https://en.wikipedia.org/wiki/Euler_method

ATPESC 202417 LLNL-PRES-852979

Linear Stability Example – Implicit Euler

Consider the implicit Euler method:

For the Dahlquist test problem, this becomes

which only decays to zero if .

Hence the explicit Euler linear stability region is

From https://en.wikipedia.org/wiki/Backward_Euler_method

https://en.wikipedia.org/wiki/Backward_Euler_method

	Slide 1: Time Integration (with hands-on examples using SUNDIALS)
	Slide 2: Time integrators in the HPC “landscape”
	Slide 3: Time integrators in the HPC “landscape”
	Slide 4: Time integrator overview
	Slide 5: Time integrator overview (continued)
	Slide 6: Choosing between explicit and implicit methods
	Slide 7: Adaptive time-step selection
	Slide 8: “Solving” Initial-Value Problems with SUNDIALS
	Slide 9: Other DOE Time Integration Packages
	Slide 10: Implicit methods require a nonlinear solver for F y 0
	Slide 11: Why use a solver library (instead of “rolling your own”)
	Slide 12: Hands-on lessons
	Slide 13: Take Away Messages
	Slide 14
	Slide 15: Linear Stability – A brief refresher
	Slide 16: Linear Stability Example – Explicit Euler
	Slide 17: Linear Stability Example – Implicit Euler

