

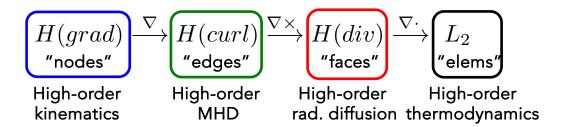
FASTMath Unstructured Mesh Technologies

E. Boman¹, V. Dobrev², D.A. Ibanez¹, K.E. Jansen³, T. Kolev², J.Merson⁴, O. Sahni⁴, M.S. Shephard⁴, G.M. Slota⁴, C.W. Smith⁴, V. Tomov²

¹Sandia National Laboratories ²Lawrence Livermore National Laboratory ³University of Colorado ⁴Rensselaer Polytechnic Institute

Finite elements are a good foundation for large-scale simulations on current and future architectures

- Backed by well-developed theory
- Naturally support unstructured and curvilinear grids.
- Finite elements naturally connect different physics

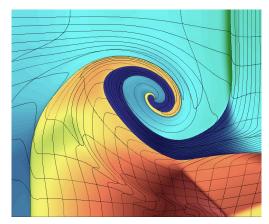


High-order finite elements on high-order meshes

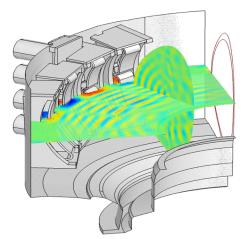
- increased accuracy for smooth problems
- sub-element modeling for problems with shocks
- bridge unstructured/structured grids
- bridge sparse/dense linear algebra
- HPC utilization, FLOPs/bytes increase with the order

Need new (interesting!) R&D for full benefits

• meshing, discretizations, solvers, AMR, UQ, visualization, ...



8th order Lagrangian simulation of shock triple-point interaction



Core-Edge tokamak EM wave propagation

Modular Finite Element Methods (MFEM)

Flexible discretizations on unstructured grids

- Triangular, quadrilateral, tetrahedral, hexahedral, prism; volume, surface and topologically periodic meshes
- Bilinear/linear forms for: Galerkin methods, DG, HDG, DPG, IGA, ...
- Local conforming and non-conforming AMR, mesh optimization
- Hybridization and static condensation

High-order methods and scalability

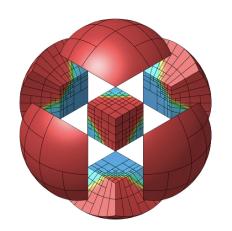
- Arbitrary-order H1, H(curl), H(div)- and L2 elements
- Arbitrary order curvilinear meshes
- MPI scalable to millions of cores + GPU accelerated
- Enables development from laptops to exascale machines.

Solvers and preconditioners

- Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, Vislt, ...
- AMG solvers for full de Rham complex on CPU+GPU, geometric MG
- Time integrators: SUNDIALS, PETSc, built-in RK, SDIRK, ...

Open-source software

- Open-source (GitHub) with 114 contributors, 50 clones/day
- Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, ...
- 75+ example codes & miniapps: <u>mfem.org/examples</u>



mfem.org (v4.7, May 2024)

Mesh

```
// 2. Read the mesh from the given mesh file. We can handle triangular,
             quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
              the same code.
66
       Mesh *mesh;
67
       ifstream imesh(mesh file);
       if (!imesh)
68
69
70
71
72
73
74
75
76
77
78
80
81
82
83
84
          cerr << "\nCan not open mesh file: " << mesh file << '\n' << endl;
          return 2:
       mesh = new Mesh(imesh, 1, 1);
       imesh.close();
       int dim = mesh->Dimension();
       // 3. Refine the mesh to increase the resolution. In this example we do
              'ref levels' of uniform refinement. We choose 'ref levels' to be the
              largest number that gives a final mesh with no more than 50,000
          int ref levels =
              (int)floor(log(50000./mesh->GetNE())/log(2.)/dim);
          for (int 1 = 0; 1 < ref_levels; 1++)
85
             mesh->UniformRefinement():
```

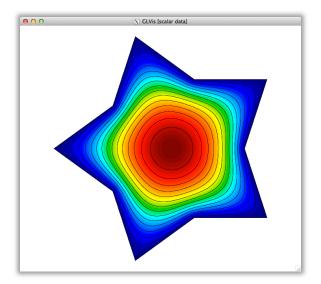
Finite element space

Initial guess, linear/bilinear forms

```
// 5. Set up the linear form b(.) which corresponds to the right-hand side of
              the FEM linear system, which in this case is (1,phi_i) where phi_i are
              the basis functions in the finite element fespace.
104
        LinearForm *b = new LinearForm(fespace);
        ConstantCoefficient one(1.0);
106
       b->AddDomainIntegrator(new DomainLFIntegrator(one));
108
        // 6. Define the solution vector x as a finite element grid function
110
             corresponding to fespace. Initialize x with initial guess of zero,
              which satisfies the boundary conditions.
112
       GridFunction x(fespace);
114
        // 7. Set up the bilinear form a(.,.) on the finite element space
116
             corresponding to the Laplacian operator -Delta, by adding the Diffusion
              domain integrator and imposing homogeneous Dirichlet boundary
118
              conditions. The boundary conditions are implemented by marking all the
              boundary attributes from the mesh as essential (Dirichlet). After
              assembly and finalizing we extract the corresponding sparse matrix A.
        BilinearForm *a = new BilinearForm(fespace);
        a->AddDomainIntegrator(new DiffusionIntegrator(one));
124
        Array<int> ess bdr(mesh->bdr attributes.Max());
       ess_bdr = 1;
126
       a->EliminateEssentialBC(ess bdr, x, *b);
       const SparseMatrix &A = a->SpMat();
```

Linear solve

Visualization



- works for any mesh & any H1 order
- builds without external dependencies

Mesh

```
63
       // 2. Read the mesh from the given mesh file. We can handle triangular,
64
             quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
       //
65
             the same code.
66
      Mesh *mesh;
67
       ifstream imesh(mesh file);
68
       if (!imesh)
69
70
         cerr << "\nCan not open mesh file: " << mesh file << '\n' << endl;
71
         return 2:
72
73
      mesh = new Mesh(imesh, 1, 1);
74
       imesh.close();
75
       int dim = mesh->Dimension();
76
77
       // 3. Refine the mesh to increase the resolution. In this example we do
78
       11
             'ref levels' of uniform refinement. We choose 'ref levels' to be the
79
       //
             largest number that gives a final mesh with no more than 50,000
80
       //
             elements.
81
82
          int ref levels =
83
             (int)floor(log(50000./mesh->GetNE())/log(2.)/dim);
84
          for (int l = 0; l < ref levels; l++)</pre>
85
             mesh->UniformRefinement();
86
```

Finite element space

```
88
      // 4. Define a finite element space on the mesh. Here we use continuous
89
            Lagrange finite elements of the specified order. If order < 1, we
90
            instead use an isoparametric/isogeometric space.
91
      FiniteElementCollection *fec;
92
      if (order > 0)
93
          fec = new H1 FECollection(order, dim);
94
      else if (mesh->GetNodes())
95
         fec = mesh->GetNodes()->OwnFEC();
96
      else
97
         fec = new H1 FECollection(order = 1, dim);
98
      FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
      cout << "Number of unknowns: " << fespace->GetVSize() << endl;
99
```

Initial guess, linear/bilinear forms

```
// 5. Set up the linear form b(.) which corresponds to the right-hand side of
101
102
             the FEM linear system, which in this case is (1,phi i) where phi i are
103
             the basis functions in the finite element fespace.
104
       LinearForm *b = new LinearForm(fespace);
105
       ConstantCoefficient one(1.0);
106
       b->AddDomainIntegrator(new DomainLFIntegrator(one));
107
       b->Assemble();
108
109
       // 6. Define the solution vector x as a finite element grid function
110
             corresponding to fespace. Initialize x with initial guess of zero,
111
             which satisfies the boundary conditions.
112
       GridFunction x(fespace);
113
       x = 0.0;
114
115
       // 7. Set up the bilinear form a(.,.) on the finite element space
116
             corresponding to the Laplacian operator -Delta, by adding the Diffusion
       //
117
       //
             domain integrator and imposing homogeneous Dirichlet boundary
118
             conditions. The boundary conditions are implemented by marking all the
119
             boundary attributes from the mesh as essential (Dirichlet). After
       //
120
             assembly and finalizing we extract the corresponding sparse matrix A.
121
       BilinearForm *a = new BilinearForm(fespace);
122
       a->AddDomainIntegrator(new DiffusionIntegrator(one));
123
       a->Assemble();
124
       Array<int> ess bdr(mesh->bdr attributes.Max());
125
       ess bdr = 1;
126
       a->EliminateEssentialBC(ess bdr, x, *b);
127
       a->Finalize();
128
       const SparseMatrix &A = a->SpMat();
```

Linear solve

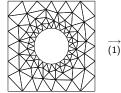
```
130 #ifndef MFEM USE SUITESPARSE
131
       // 8. Define a simple symmetric Gauss-Seidel preconditioner and use it to
132
             solve the system Ax=b with PCG.
133
       GSSmoother M(A);
134
       PCG(A, M, *b, x, 1, 200, 1e-12, 0.0);
135 #else
136
     // 8. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
137
       UMFPackSolver umf solver;
138
       umf solver.Control[UMFPACK ORDERING] = UMFPACK ORDERING METIS;
139
       umf solver.SetOperator(A);
140
       umf solver.Mult(*b, x);
141 #endif
```

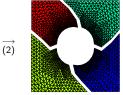
Visualization

```
// 10. Send the solution by socket to a GLVis server.
152
153
        if (visualization)
154
           char vishost[] = "localhost";
155
156
           int visport
                         = 19916;
157
           socketstream sol sock(vishost, visport);
158
           sol sock.precision(8);
159
           sol sock << "solution\n" << *mesh << x << flush;
160
```

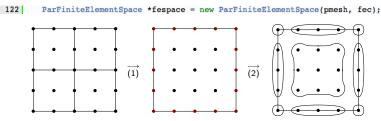
Example 1 – parallel Laplace equation

Parallel mesh





Parallel finite element space



 $P: true_dof \mapsto dof$

Parallel initial guess, linear/bilinear forms

```
130 ParLinearForm *b = new ParLinearForm(fespace);

138 ParGridFunction x(fespace);

147 ParBilinearForm *a = new ParBilinearForm(fespace);
```

Parallel assembly

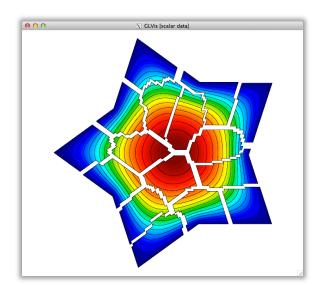
```
155 // 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
156 // b(.) and the finite element approximation.
157 HypreParMatrix *A = a->ParallelAssemble();
158 HypreParVector *B = b->ParallelAssemble();
159 HypreParVector *X = x.ParallelAssemble();
```

$$A = P^T a P$$
 $B = P^T b$ $x = P X$

Parallel linear solve with AMG

```
// 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
// preconditioner from hypre.
166 HypreSolver *amg = new HypreBoomerAMG(*A);
167 HyprePCG *pcg = new HyprePCG(*A);
168 pcg->SetTol(le-12);
169 pcg->SetMaxIter(200);
170 pcg->SetPrintLevel(2);
171 pcg->SetPreconditioner(*amg);
172 pcg->Wulk(*B, *X);
```

Visualization



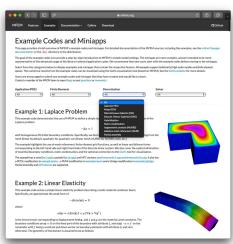
- highly scalable with minimal changes
- build depends on hypre and METIS

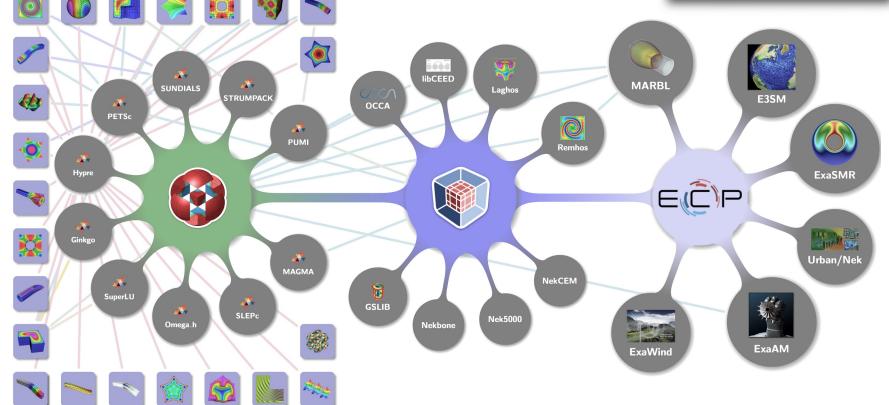
Example 1 – parallel Laplace equation

```
// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
101
102
              this mesh further in parallel to increase the resolution. Once the
103
              parallel mesh is defined, the serial mesh can be deleted.
        ParMesh *pmesh = new ParMesh(MPI COMM WORLD, *mesh);
104
105
        delete mesh:
106
107
           int par ref levels = 2;
108
           for (int 1 = 0; 1 < par ref levels; 1++)
              pmesh->UniformRefinement();
109
110
122
       ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
       ParLinearForm *b = new ParLinearForm(fespace);
130
138
       ParGridFunction x(fespace);
147
       ParBilinearForm *a = new ParBilinearForm(fespace);
       // 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
155
156
              b(.) and the finite element approximation.
       HypreParMatrix *A = a->ParallelAssemble();
157
158
       HypreParVector *B = b->ParallelAssemble();
159
       HypreParVector *X = x.ParallelAverage();
       // 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
164
165
               preconditioner from hypre.
        //
166
        HypreSolver *amg = new HypreBoomerAMG(*A);
167
       HyprePCG *pcg = new HyprePCG(*A);
168
        pcg->SetTol(1e-12);
169
       pcg->SetMaxIter(200);
170
        pcg->SetPrintLevel(2);
171
        pcg->SetPreconditioner(*amg);
172
       pcg->Mult(*B, *X);
           sol sock << "parallel " << num procs << " " << myid << "\n";
200
201
           sol sock.precision(8);
           sol sock << "solution\n" << *pmesh << x << flush;
202
```

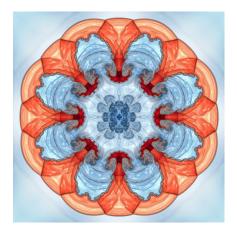
MFEM example codes: mfem.org/examples

- 40+ example codes, most with both serial + parallel versions
- Tutorials to learn MFEM features
- Starting point for new applications
- Show integration with many external packages
- Miniapps: more advanced, ready-to-use physics solvers

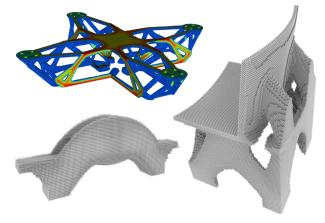




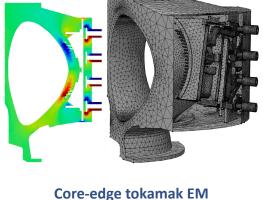
Some large-scale simulation codes powered by MFEM



Inertial confinement fusion (BLAST)

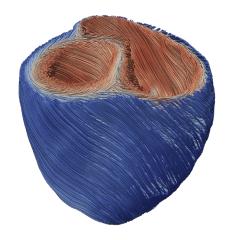


Topology optimization for additive manufacturing (LiDO)

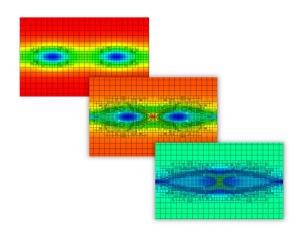


Core-edge tokamak EM wave propagation (SciDAC, RPI)

MRI modeling (Harvard Medical)



Heart modeling (Cardioid)



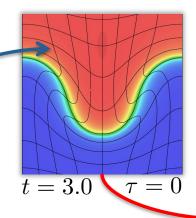
Adaptive MHD island coalescence (SciDAC, LANL)

BLAST models shock hydrodynamics using high-order FEM in both Lagrangian and Remap phases of ALE

Lagrange phase

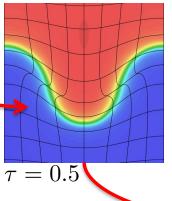
Physical time evolution

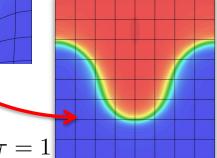
Based on physical motion



Remap phase

Pseudo-time evolution Based on mesh motion





Lagrangian phase $(\vec{c} = \vec{0})$

 $\rho \frac{\mathrm{d}\vec{\mathbf{v}}}{\mathrm{d}t} = \nabla \cdot \boldsymbol{\sigma}$ **Momentum Conservation:**

t = 0

Mass Conservation:

 $\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho\nabla\cdot\vec{\mathbf{v}}$

t = 1.5

Energy Conservation:

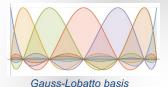
 $\rho \frac{\mathrm{d}e}{\mathrm{d}t} = \sigma : \nabla \vec{\mathbf{v}}$

Equation of Motion:

ATPESC 2024

 $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \vec{v}$

Galerkin FEM



Discont. Galerkin

Bernstein basis

Advection phase ($\vec{c} = -\vec{v}_m$)

Momentum Conservation:

 $\frac{\mathrm{d}(
ho \vec{v})}{\mathrm{d} au} = \vec{v}_m \cdot \nabla(
ho \vec{v})$

Mass Conservation:

 $\frac{\mathrm{d}\rho}{\mathrm{d}\tau} = \vec{\mathsf{v}}_{\mathsf{m}} \cdot \nabla \rho$

Energy Conservation:

 $\frac{\mathrm{d}(\rho e)}{\mathrm{d}\tau} = \vec{\mathrm{v}}_m \cdot \nabla(\rho e)$

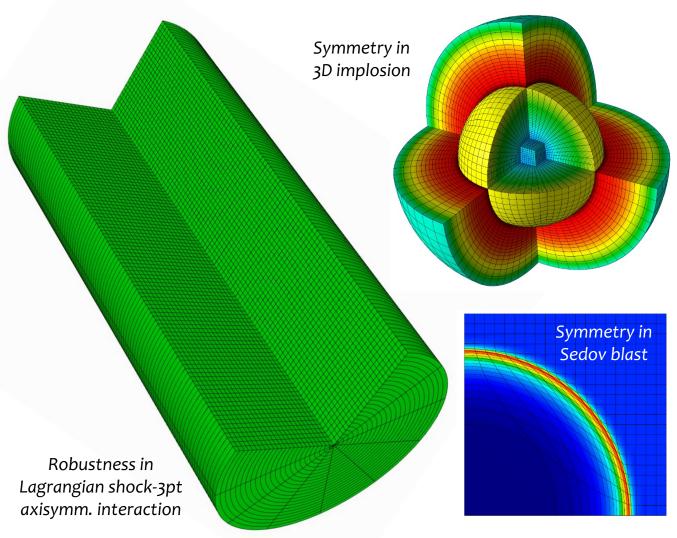
12 FASTMATH

Mesh velocity:

 $\vec{\mathbf{v}}_m = \frac{\mathrm{d}\vec{\mathbf{x}}}{\mathrm{d} au}$

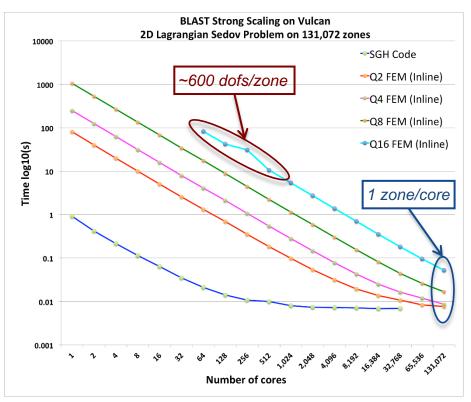
High-order finite elements lead to more accurate, robust and reliable hydrodynamic simulations

Parallel ALE for Q4 Rayleigh-Taylor instability (256 cores)

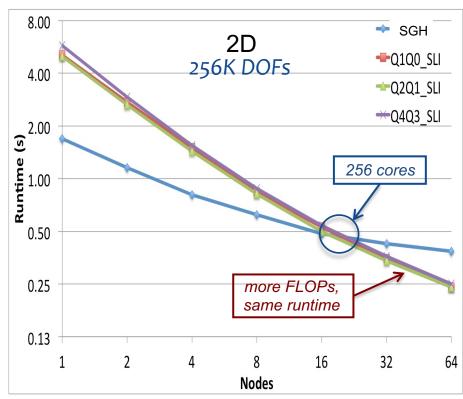


High-order finite elements have excellent strong scalability

Strong scaling, p-refinement



Strong scaling, fixed #dofs

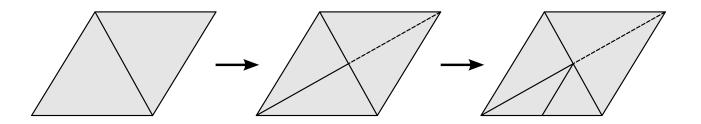


Finite element partial assembly

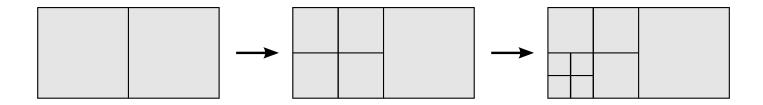
FLOPs increase faster than runtime

Conforming & Nonconforming Mesh Refinement

Conforming refinement



Nonconforming refinement



Natural for quadrilaterals and hexahedra

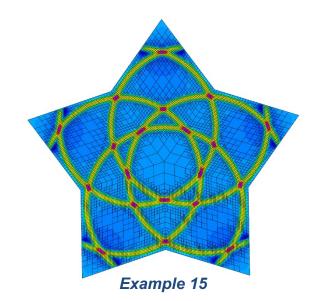
MFEM's unstructured AMR infrastructure

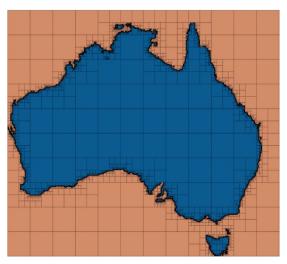
Adaptive mesh refinement on library level:

- Conforming local refinement on simplex meshes
- Non-conforming refinement for quad/hex meshes
- h-refinement with fixed p

General approach:

- any high-order finite element space, H1, H(curl),
 H(div), ..., on any high-order curved mesh
- 2D and 3D
- arbitrary order hanging nodes
- anisotropic refinement
- derefinement
- serial and parallel, including parallel load balancing
- independent of the physics (easy to incorporate in applications)

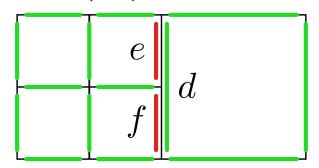




Shaper miniapp

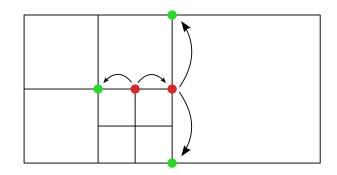
General nonconforming constraints

H(curl) elements



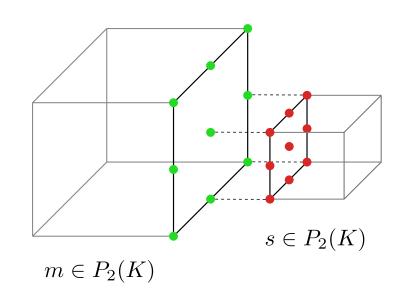
Constraint: e = f = d/2

Indirect constraints



More complicated in 3D...

High-order elements



Constraint: local interpolation matrix

$$s = Q \cdot m, \quad Q \in \mathbb{R}^{9 \times 9}$$

General constraint:

$$y = Px, \quad P = \begin{bmatrix} I \\ W \end{bmatrix}.$$

x – conforming space DOFs,

y – nonconforming space DOFs (unconstrained + slave),

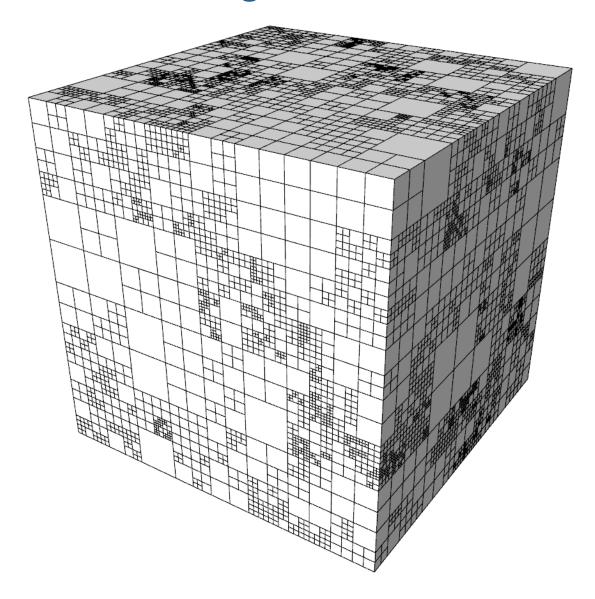
$$dim(x) \leq dim(y)$$

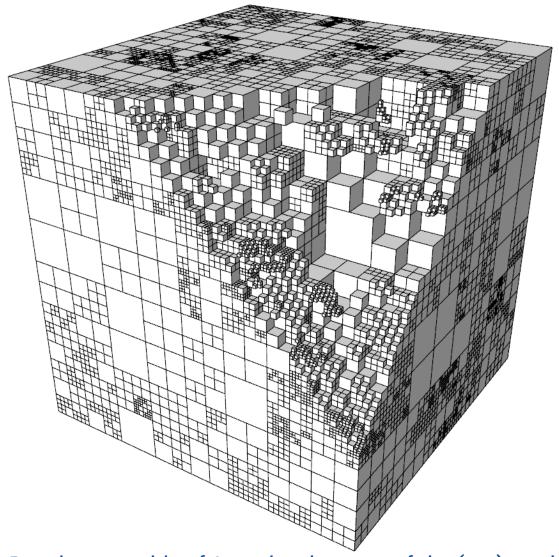
W – interpolation for slave DOFs

Constrained problem:

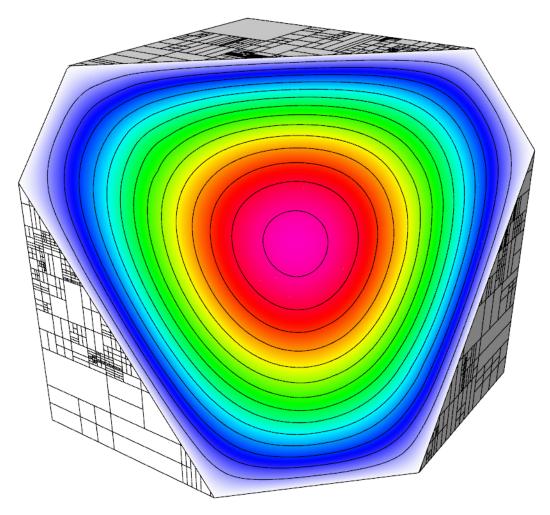
$$P^TAPx = P^Tb,$$

 $y = Px.$



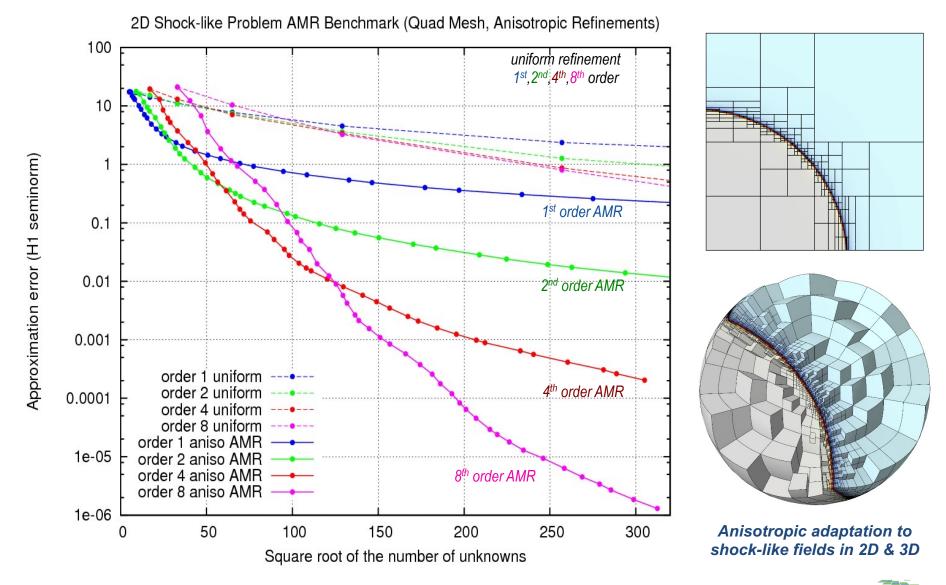


Regular assembly of A on the elements of the (cut) mesh

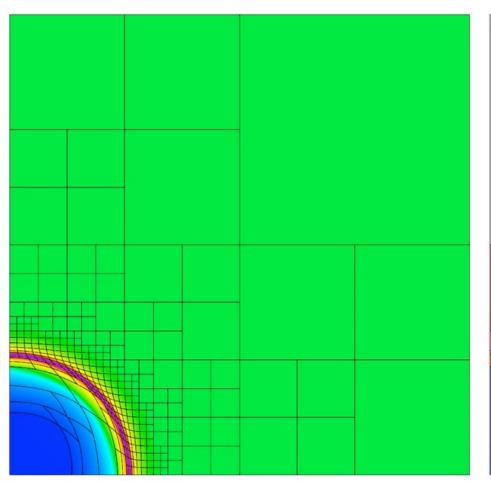


Conforming solution y = P x

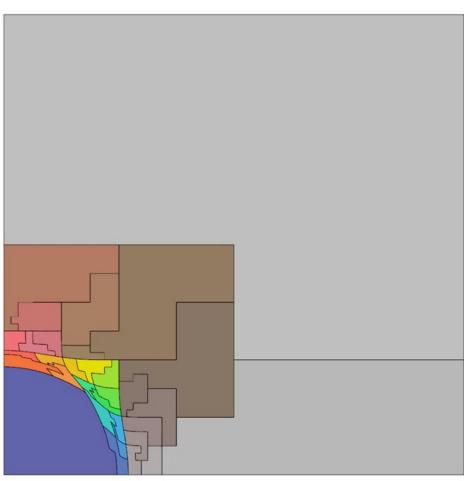
AMR = smaller error for same number of unknowns



Parallel dynamic AMR, Lagrangian Sedov problem

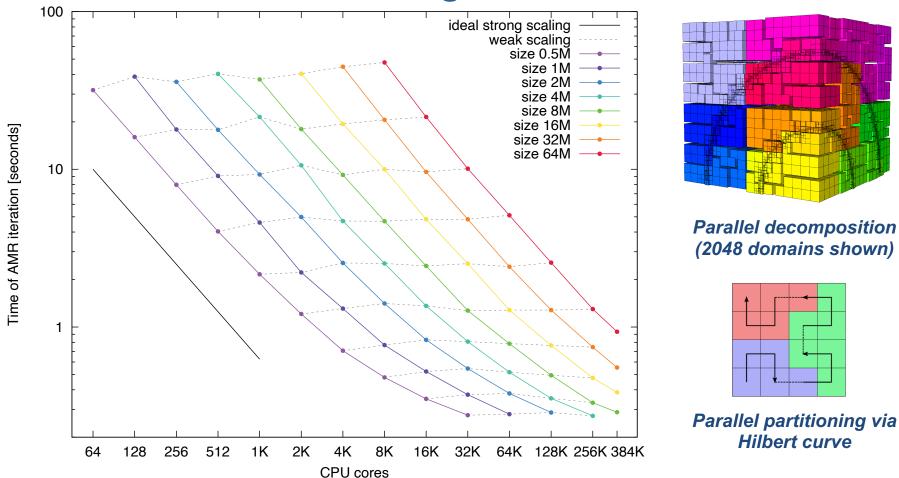


Adaptive, viscosity-based refinement and derefinement. 2nd order Lagrangian Sedov



Parallel load balancing based on spacefilling curve partitioning, 16 cores

Parallel AMR scaling to ~400K MPI tasks

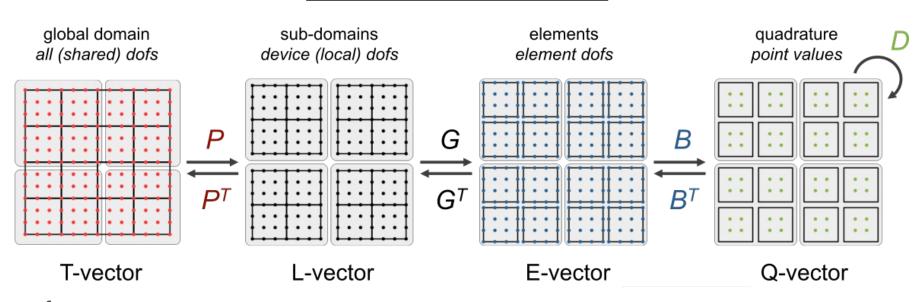


- weak+strong scaling up to ~400K MPI tasks on BG/Q
- measure AMR only components: interpolation matrix, assembly, marking, refinement & rebalancing (no linear solves, no "physics")

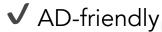
Fundamental finite element operator decomposition

The assembly/evaluation of FEM operators can be decomposed into **parallel**, **mesh topology**, **basis**, and **geometry/physics** components:

$$A = P^T G^T B^T DBGP$$



- \checkmark partial assembly = store only □, evaluate B (tensor-product structure)
- ✓ better representation than A: optimal memory, near-optimal FLOPs
- ✓ purely algebraic ✓ high-order operator format



Example of a fast high-order operator

Poisson problem in variational form

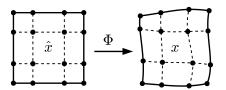
Find
$$u \in Q_p \subset \mathcal{H}_0^1$$
 s.t. $\forall v \in Q_p$,

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v$$

Stiffness matrix (unit coefficient)

$$\begin{split} & \text{Stiffness matrix (unit coefficient)} \\ & \int_{\Omega} \nabla \varphi_{i} \nabla \varphi_{j} = \sum_{E} \int_{E} \nabla \varphi_{i} \nabla \varphi_{j} \\ & \uparrow \\ & A_{ij} = \sum_{E} \sum_{k} \alpha_{k} J_{E}^{-1}(q_{k}) \hat{\nabla} \hat{\varphi}_{i}(q_{k}) J_{E}^{-1}(q_{k}) \hat{\nabla} \hat{\varphi}_{j}(q_{k}) |J_{E}(q_{k})| \\ & = \sum_{E} \sum_{k} \hat{\nabla} \hat{\varphi}_{i}(q_{k}) (\alpha_{k} J_{E}^{-T}(q_{k}) J_{E}^{-1}(q_{k}) |J_{E}(q_{k})|) \hat{\nabla} \hat{\varphi}_{j}(q_{k}) \\ & G, G^{T} \quad (B^{T})_{ik} \qquad D_{kk} \qquad B_{kj} \end{split}$$

J is the Jacobian of the element mapping (geometric factors)

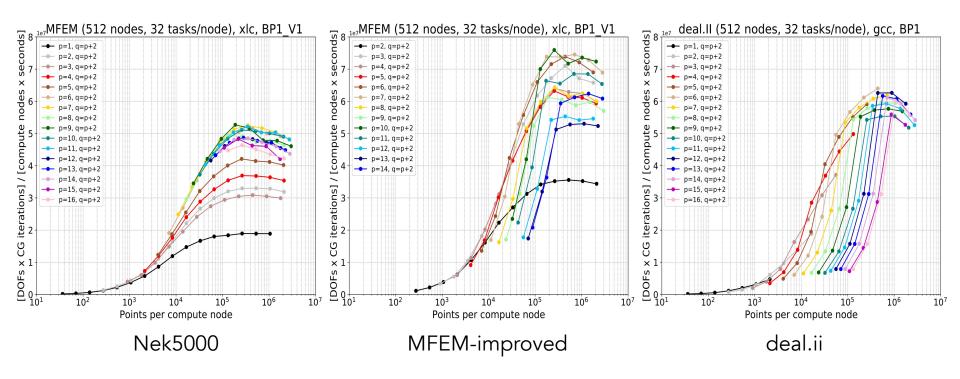


- G is usually Boolean (except AMR)
- Element matrices $A_F = B^T D B$, are full, account for bulk of the physics, can be applied in parallel

$$\left[\begin{array}{ccc}A^1\\&A^2\\&&\ddots\\&&A^4\end{array}\right]$$

Never form A_E , just apply its action based on actions of B, B^T and D

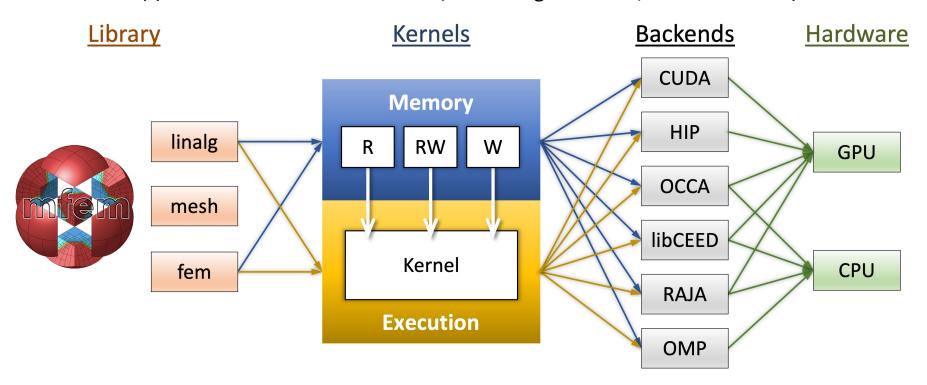
CEED BP1 bakeoff on BG/Q



- ✓ All runs done on BG/Q (for repeatability), 16384 MPI ranks. Order p = 1, ..., 16; quad. points q = p + 2.
- ✓ BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and deal.ii + gcc (right) on BG/Q.
- ✓ Paper: "Scalability of High-Performance PDE Solvers", IJHPCA, 2020
- ✓ Cooperation/collaboration is what makes the bake-offs rewarding.

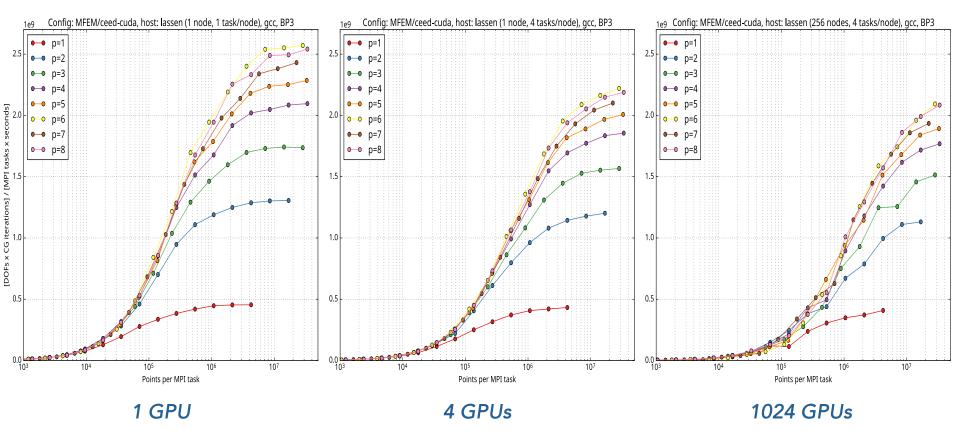
Device support in MFEM

MFEM support GPU acceleration in many linear algebra and finite element operations



- Several MFEM examples + miniapps have been ported with small changes
- Many kernels have a single source for CUDA, RAJA and OpenMP backends
- Backends are runtime selectable, can be mixed
- Recent improvements in CUDA, HIP, RAJA, SYCL, ...

MFEM performance on multiple GPUs



Single GPU performance: 2.6 GDOF/s

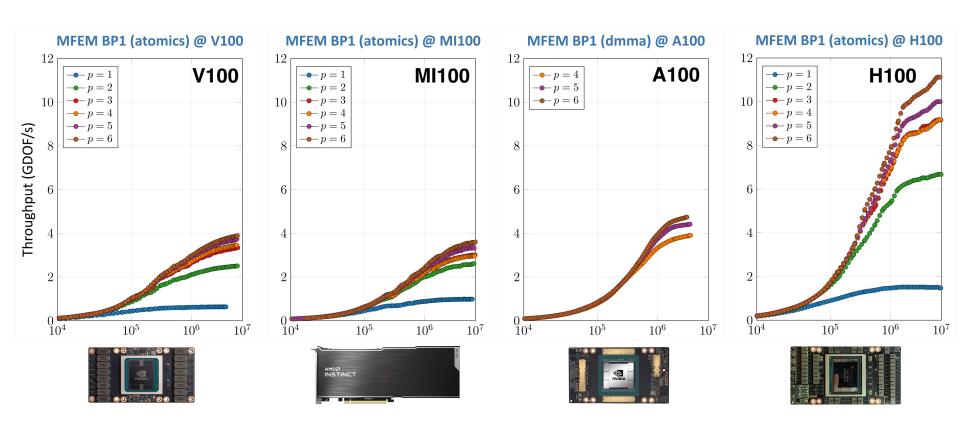
Problem size: 10+ million

Best total performance: 2.1 TDOF/s

Largest size: 34 billion

Optimized kernels for MPI buffer packing/unpacking on the GPU

Recent improvements on NVIDIA and AMD GPUs



New MFEM GPU kernels: perform on both V100 + MI100, have better strong scaling, can utilize tensor cores on A100 achieve 10+ GDOFs on H100

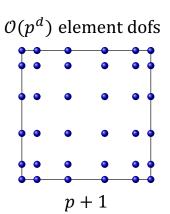
Matrix-free preconditioning

Explicit matrix assembly impractical at high order:

- Polynomial degree p, spatial dimension d
- Matrix assembly + sparse matvecs:
 - $\mathcal{O}(p^{2d})$ memory transfers
 - $\mathcal{O}(p^{3d})$ computations
 - can be reduced to $\mathcal{O}(p^{2d+1})$ computations by sum factorization
- Matrix-free action of the operator (partial assembly):
 - $\mathcal{O}(p^d)$ memory transfers optimal
 - $\mathcal{O}(p^{d+1})$ computations nearly-optimal
 - efficient iterative solvers if combined with effective preconditioners

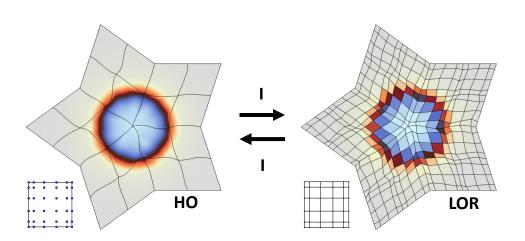
Challenges:

- Traditional matrix-based preconditioners (e.g. AMG) not available
- Condition number of diffusion systems grows like $\mathcal{O}(p^3/h^2)$



Low-Order-Refined (LOR) preconditioning

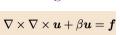
Efficient LOR-based preconditioning of H1, H(curl), H(div) and L2 high-order operators

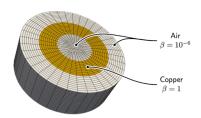


Theorem 2. Let M_{\star} and K_{\star} denote the mass and stiffness matrices, respectively, where \star represents one of the above-defined finite element spaces with basis as in Section 4.3. Then we have the following spectral equivalences, independent of mesh size h and polynomial degree p.

$$\begin{split} &M_{V_h} \sim M_{V_p}, &K_{V_h} \sim K_{V_p}, \\ &M_{\boldsymbol{W}_h} \sim M_{\boldsymbol{W}_p}, &K_{\boldsymbol{W}_h} \sim K_{\boldsymbol{W}_p}, \\ &M_{\boldsymbol{X}_h} \sim M_{\boldsymbol{X}_p}, &K_{\boldsymbol{X}_h} \sim K_{\boldsymbol{X}_p}, \\ &M_{Y_h} \sim M_{Y_{p-1}}, &K_{Z_h} \sim K_{Z_p}. \end{split}$$

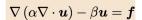
 $(A_{HO})^{-1} \approx (A_{LOR})^{-1} \approx B_{LOR}$ - can use BoomerAMG, AMS, ADS

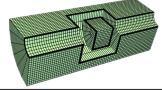




LOR-AMS							
p	Its.	Assembly (s)	AMG Setup (s)	Solve (s)	# DOFs	# NNZ	
2	41	0.082	0.277	0.768	516,820	1.65×10^{7}	
3	63	0.251	0.512	2.754	1,731,408	5.64×10^{7}	
4	75	0.679	1.133	7.304	4,088,888	1.34×10^{8}	
5	62	1.574	2.185	11.783	7,968,340	2.61×10^{8}	
6	89	3.336	4.024	30.702	13,748,844	4.51×10^8	
Matrix-Based AMS							
p	Its.	Assembly (s)	AMG Setup (s)	Solve (s)	# DOFs	# NNZ	

p	Its.	Assembly (s)	AMG Setup (s)	Solve (s)	# DOFs	# NNZ
2	39	0.140	0.385	1.423	516,820	5.24×10^{7}
3	44	1.368	1.572	9.723	1,731,408	4.01×10^{8}
4	49	9.668	5.824	45.277	4,088,888	1.80×10^{9}
5	53	61.726	15.695	148.757	7,968,340	5.92×10^{9}
6	56	502.607	40.128	424.100	13,748,844	1.59×10^{10}





	LOF	R-ADS	Matrix-I		
p	Runtime (s)	Memory (GB)	Runtime (s)	Memory (GB)	Speedup
2	2.11	0.04	2.98	0.20	1.41×
3	6.64	0.15	22.58	1.84	$3.40 \times$
4	17.40	0.35	114.35	9.13	$6.57 \times$
5	43.70	0.68	422.74	32.21	$9.67 \times$
6	92.76	1.18	1324.94	91.09	$14.28 \times$

High-order methods show promise for high-quality & performant simulations on exascale platforms

More information and publications

- MFEM mfem.org
- BLAST computation.llnl.gov/projects/blast
- CEED ceed.exascaleproject.org

Open-source software

Ongoing R&D

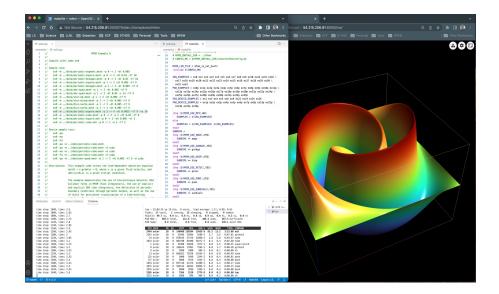
- GPU-oriented algorithms for Frontier, Aurora, El Capitan
- Matrix-free scalable preconditioners
- Automatic differentiation, design optimization
- Deterministic transport, multi-physics coupling

Q4 Rayleigh-Taylor singlematerial ALE on 256 processors

Upcoming MFEM Events

MFEM in the Cloud Tutorial

August 22, 2024



MFEM Community Workshop

October 22-24, 2024

https://mfem.org/tutorial

https://mfem.org/workshop

FEM @ L Seminar series: https://mfem.org/seminar

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Unstructured Mesh Methods

Unstructured mesh – a spatial domain discretization composed of topological entities with general connectivity and shape

Advantages

- Automatic mesh generation for any level of geometric complexity
- Can provide the highest accuracy on a per degree of freedom basis
- General mesh anisotropy possible
- Meshes can easily be adaptively modified
- Given a complete geometry, with analysis attributes defined on that model, the entire simulation workflow can be automated

Disadvantages

- More complex data structures and increased program complexity, particularly in parallel
- Requires careful mesh quality control (level of control required is a function of the unstructured mesh analysis code)
- Poorly shaped elements increase condition number of global system
 makes matrix solves harder
- Non-tensor product elements not as computationally efficient

Unstructured Mesh Methods

Goal of FASTMath unstructured mesh developments include:

- Provide unstructured mesh components that are easily used by application code developers to extend their simulation capabilities
- Ensure those components execute on exascale computing systems and support performant exascale application codes
- Develop components to operate through multi-level APIs that increase interoperability and ease of integration
- Address technical gaps by developing tools that address needs and/or eliminate/minimize disadvantages of unstructured meshes
- Work with DOE application developers on integration of these components into their codes
- FASTMATH
- Develop unstructured mesh version of applications

FASTMath Unstructured Mesh Development Areas

- Unstructured Mesh Analysis Codes Support application's PDE solution needs – MFEM library is a key example
- Performant Mesh Adaptation Parallel mesh adaptation to integrate into analysis codes to ensure solution accuracy
- Dynamic Load Balancing and Task Management Technologies to ensure load balance and effectively execute by optimal task placement
- Unstructured Mesh for Particle In Cell (PIC) Codes Tools to support PIC on unstructured meshes
- Unstructured Mesh ML and UQ ML for data reduction, adaptive mesh UQ
- Code Coupling Tools Parallel geo./mesh/field coupling
- In Situ Vis and Data Analytics Tools to gain insight as simulations execute

FASTMath Unstructured Mesh Tools and Components

- FE Analysis codes
 - MFEM (<u>https://mfem.org/</u>)
 - LGR (https://github.com/SNLComputation/lgrtk)
 - PHASTA (https://github.com/phasta/phasta/)
- Unstructured Mesh Infrastructure
 - Omega_h (https://github.com/SNLComputation/omega_h)
 - PUMI/MeshAdapt (https://github.com/SCOREC/core)
 - PUMIpic (https://github.com/SCOREC/pumi-pic)
- Load balancing, task placement
 - Jet (<u>https://github.com/sandialabs/Jet-Partitioner/</u>)
 - Zoltan (https://github.com/sandialabs/Zoltan)
 - Zoltan2 (https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2)
 - Xtra-PULP (<u>https://github.com/HPCGraphAnalysis/PuLP</u>)
 - EnGPar (<u>http://scorec.github.io/EnGPar/</u>)
- General code coupling
 - PCMS (https://github.com/SCOREC/pcms)

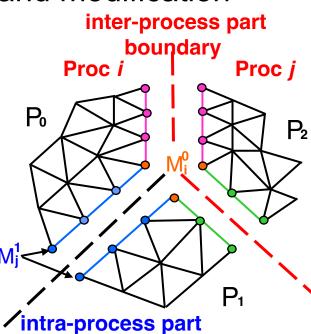
Parallel Unstructured Mesh Infrastructure

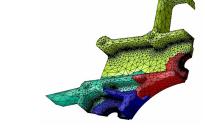
Support unstructured mesh interactions on exascale systems

- Mesh hierarchy to support interrogation and modification
- Maintains linkage to original geometry
- Conforming mesh adaptation
- Inter-process communication
- Supports field operations

Tools

- Omega_h CPU/GPU support
- PUMI CPU based curved mesh adapt.
- PUMIPic Unstructured mesh with particles for CPU/GPU





boundary

Mesh Generation and Control

Mesh Generation:

- Automatically mesh complex domains should work directly from CAD, image data, etc.
- Use tools like Gmsh, Simmetrix, etc.

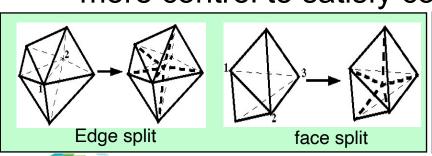
Mesh control:

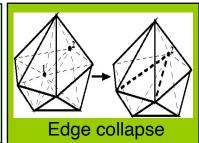
- Use a posteriori information to improve mesh
- Curved geometry and curved mesh entities
- Support full range of mesh modifications vertex motion, mesh entity curving, cavity based refinement and coarsening, etc. anisotropic adaptation
- Control element shapes as needed by the various discretization methods for maintaining accuracy and efficiency

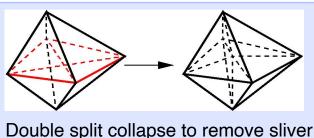
Parallel execution of all functions is critical on large meshes

General Mesh Modification for Mesh Adaptation

- Driven by an anisotropic mesh size field that can be set by any combination of criteria
- Employ a "complete set" of mesh modification operations to alter the mesh into one that matches the given mesh size field
- Advantages
 - Supports general anisotropic meshes
 - Can obtain level of accuracy desired
 - Can deal with any level of geometric domain complexity
 - Solution transfer can be applied incrementally provides more control to satisfy conservation constraints







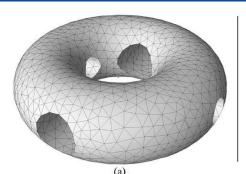
Mesh Adaptation

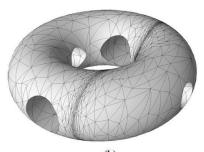
 Supports adaptation of curved elements

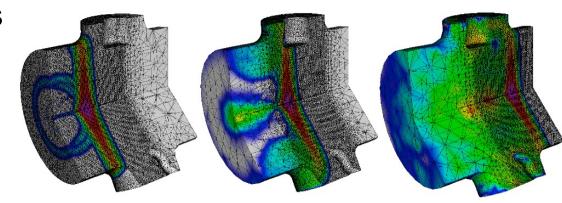
 Adaptation based on multiple criteria, examples

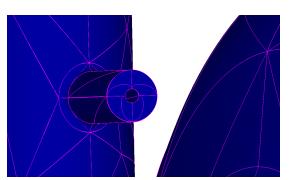
- Tracking particles
- Discretization errors

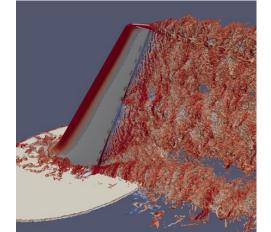
 Controlling element shape in evolving geometry





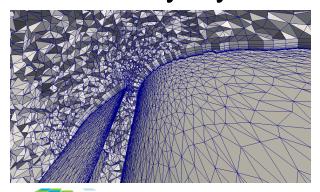


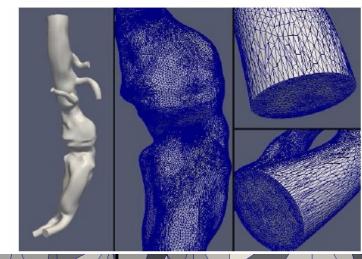


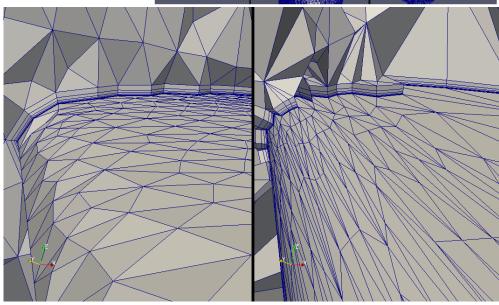


Mesh Adaptation

- Applied to very large scale models
 92B elements on 3.1M processes
 on ¾ million cores
- Local solution transfer supported through callback
- Effective storage of solution fields on meshes
- Supports adaptation with boundary layer meshes





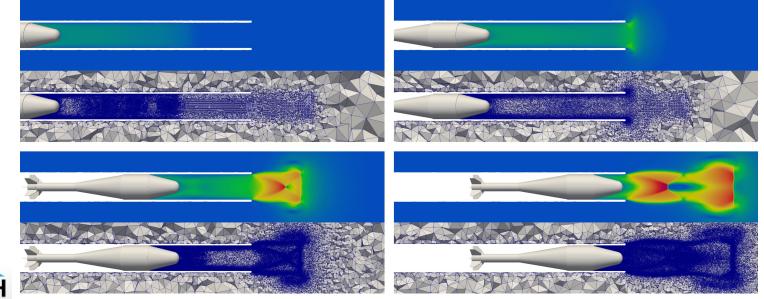


Mesh Adaptation of Evolving Geometry Problems

Many applications have geometry that evolves as a function of the results – Effective adaptive loops combine mesh motion and mesh modification

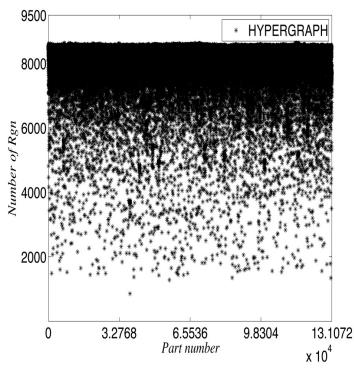
Adaptive loop:

- 1. Initialize analysis case, generate initial mesh, start time stepping loop
- 2. Perform time steps employing mesh motion monitor element quality and discretization errors
- 3. When element quality is not satisfactory or discretization errors too large set mesh size field and perform mesh modification
- 4. Return to step 2.



Load Balancing, Dynamic Load balancing

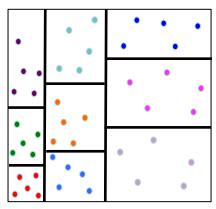
- Purpose: Balance or rebalance computational load while controlling communications
 - Equal "work load" with minimum inter-process communications
- FASTMath load balancing tools
 - Jet library is a multilevel graph partitioner that runs on a GPU (distributed mesh version under development)
 - Zoltan/Zoltan2 libraries
 provide multiple dynamic
 partitioners with general control
 of partition objects and weights
 - EnGPar diffusive multi-criteria partition improvement
 - XtraPuLP multi-constraint multi-objective label propagation-based graph partitioner



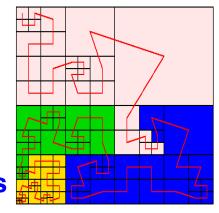
Zoltan/Zoltan2 Toolkits: Partitioners

Suite of partitioners supports a wide range of applications; no single partitioner is best for all applications.

Geometric

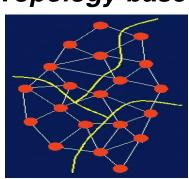


Recursive Coordinate Bisection Recursive Inertial Bisection Multi-Jagged Multi-section



Space Filling Curves

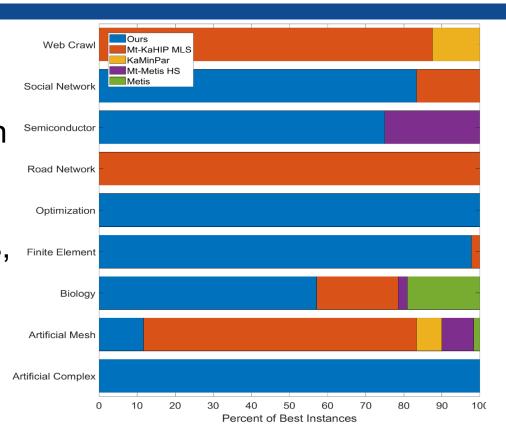
Topology-based



PHG Graph Partitioning
Interface to ParMETIS (U. Minnesota)
Interface to PT-Scotch (U. Bordeaux)

A New Graph Partitioner for GPU: Jet

Multilevel graph partitioner on GPU Uses new label propagation refinement algorithm Results (blue bars) slightly better than Metis/Parametis, but significant speedup due to GPU execution Best partitions for 98% of the test graphs from finite element meshes



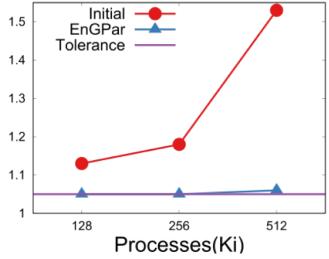
Currently single GPU (up to ~1B edges)
Multi GPU - distributed memory version is under development

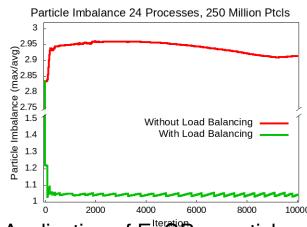
EnGPar quickly reduces large imbalances on (hyper)graphs with billions of edges on up to 512K processes

- Multi-(hyper)graph supports multiple dependencies (edges) between application work/data items (vertices)

 Application defined vertex and edges

 Diffusion sending of work from heavily
- loaded parts to lightly loaded parts
- In 8 seconds, EnGPar reduced a 53% vtx imbalance to 6%, at a cost of 5% elm imbalance, and edge cut increase by 1% on a 1.3B element mesh
- Applied to PIC calculations to support particle balance – 20% reduction in total run time



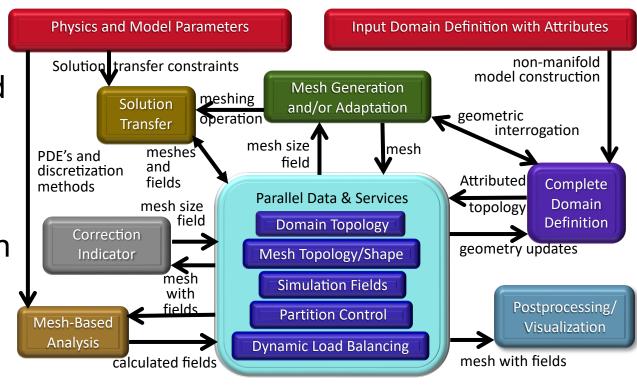


Application of EngPar particle dynamic load balancing in a GITRm impurity transport simulation

Creation of Parallel Adaptive Loops

Parallel data and services used to develop adaptive loop

- Geometric model topology for domain linkage
- Mesh topology it must be distributed
- Simulation fields distributed over geometric model and mesh
- Partition control
- Dynamic load balancing required at multiple steps
- API's to link to
 - CAD
 - Mesh generation and adaptation
 - Error estimation
 - etc.



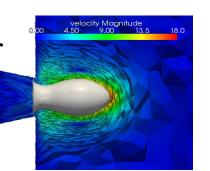
Parallel Adaptive Simulation Workflows

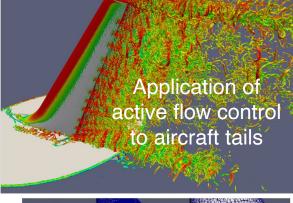
In memory adaptive loops support effective data movement

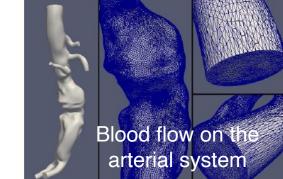
In-memory adaptive loops for

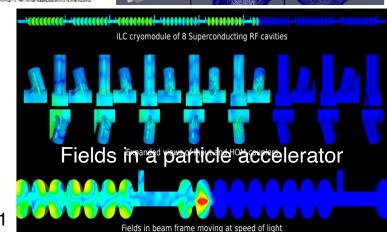
MFEM – High order
 FE framework

- PHASTA FE for NS
- FUN3D FV CFD
- Proteus multiphase FE
- Albany FE framework
- ACE3P High order FE electromagnetics
- M3D-C1 FE based MHD
- Nektar++ High order FE flow







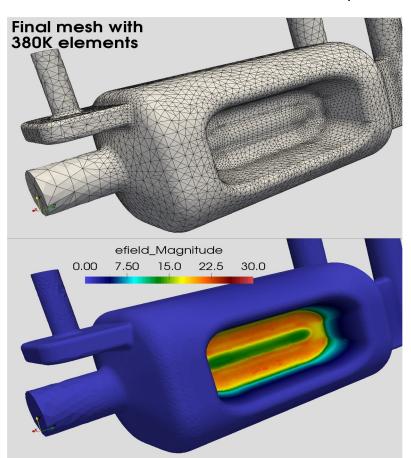


Application interactions – Accelerator EM

Omega3P Electro Magnetic Solver (second-order curved meshes)



MATH



This figure shows the adaptation results for the CAV17 model. (top left) shows the initial mesh with ~126K elements, (top right) shows the final (after 3 adaptation levels) mesh with ~380K elements, (bottom left) shows the first eigenmode for the electric field on the initial mesh, and (bottom right) shows the first eigenmode of the electric field on the final (adapted) mesh.

Application interactions – Land Ice

FELIX, a component of the Albany framework is the analysis code

Omega_h parallel mesh adaptation

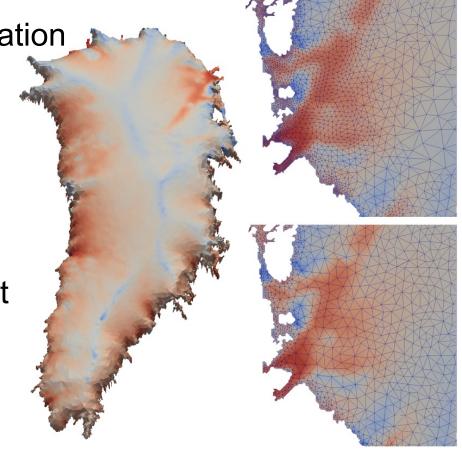
is integrated with Albany to do:

Estimate error

Adapt the mesh

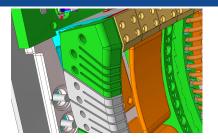
Ice sheet mesh is modified to minimize degrees of freedom Field of interest is the ice sheet

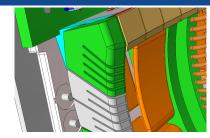
velocity



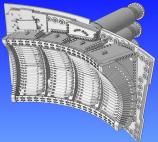
Application interactions – RF Fusion

- Accurate RF simulations require
 - Detailed antenna CAD geometry
 - CAD geometry defeaturing
 - Extracted physics curves from GEQDSK equilibrium file
 - Analysis geometry combines CAD, and physics geometry
 - 3D meshes for accurate FE calculations in MFEM
 - Projection based error estimator
 - Conforming mesh adaptation with PUMI

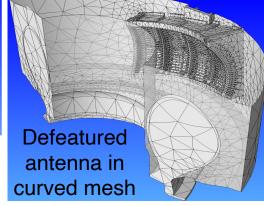


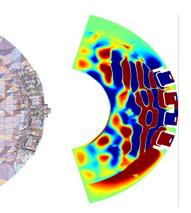


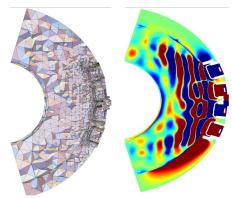
Fast elimination of unwanted features



CAD of antenna array





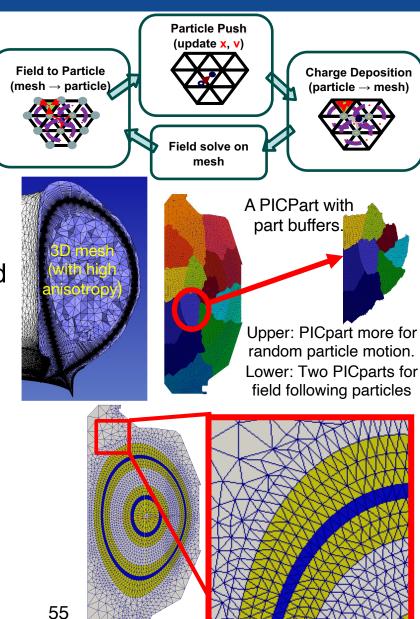


Final Adapted Mesh

Supporting Unstructured Mesh for Particle-in-Cell Calculations

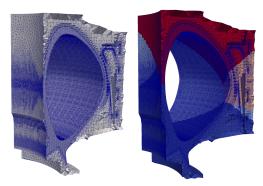
PUMIPic data structures are mesh centric

- Mesh is distributed as needed by the application in terms of PICparts
- Mesh can be graded and anisotropic
- Particle data associated with elements
- Operations take advantage of distributed mesh topology
- Mesh relation to geometry used to speed calculation for near surface physics
- Mesh distributed in PICparts
 - Start with a partition of mesh into a set of "core parts"
 - A PICpart is defined by a "core part" and sufficient buffer to keep particles on process for one or more pushes

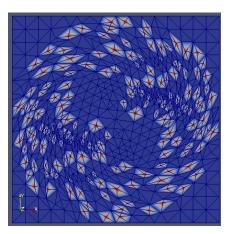


Mesh Data Structure for Heterogeneous Systems

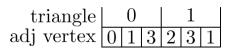
- Mesh topology/adaptation tool Omega
 - Conforming mesh adaptation (coarsening past initial mesh, refinement, swap)
 - Manycore and GPU parallelism using Kokkos
 - Distributed mesh via mesh partitions with MPI communications
 - Support for mesh-based fields
- Recent developments:
 - Curved mesh adaptation
 - More efficient field storage
 - Kokkos implementation on latest NVIDIA, AMD and Intel GPUs

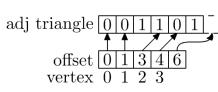


Serial and RIB partitioned mesh of RF antenna and vessel model.



Adaptation following rotating flow field.

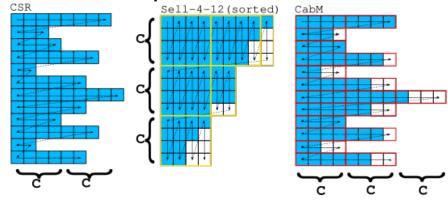




Mesh entity adjacency arrays.

PUMIPic Particle Data Structures

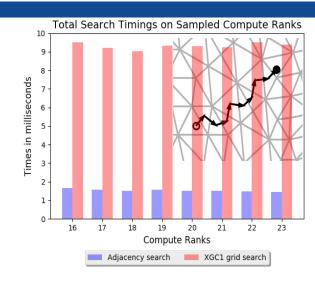
- Layout of particles in memory is critical to performance
 - Optimizes push (sort/rebuild), scatter, and gather operations
 - Associate particles with elements for large per element particle cases
 - Support changes in the number of particles per element
 - Evenly distributes work under a range of particle distributions (e.g. uniform, Gaussian, exponential, etc.)
 - Stores a lot of particles per GPU low overhead
- Particle data structure interface and implementation
 - API abstracts implementation for PIC code developers
 - CSR, Sell-C-σ, CabanaM
 - Performance is a function of particle distribution
 - Cabana AoSoA w/a CSR index of elements-to-particles are promising
 - DPS particle structure for low particle density applications



Left to Right: CSR, SCS with vertical slicing (yellow boxes), CabanaM (red boxes are SOAs). C is a team of threads.

PIC Operations Supported by PUMIPic

- Particle push
- Adjacency based search
 - Faster than grid based search
- Element-to-particle association update
- Particle Migration
- Particle path visualization
- Mesh partitioning w/buffer regions
- Mesh field association
- Fast construction of elements within given distance of mesh faces on model surface
- Poisson field solve using PETSc DMPlex on GPUs



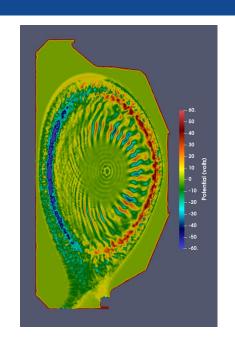
PUMIPic based XGCm Edge Plasma Code

XGCm is a version of XGC built on PUMIPic

All operations on GPUs – push, gather/scatter, etc.

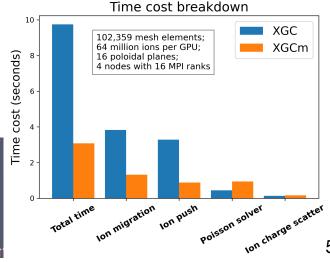
Testing of PUMIPic for use in XGC like push

- 2M elements, 1M vertices, 2 to 128 poloidal planes
- Pseudo push and particle-to-mesh gyro scatter
- Tested on up to 24,576 GPUs of Summit with 1.1 trillion particles, for 100 iterations: push, adjacency
- PUMIPic weak scaling up to 24576 GPUs (4096 nodes) with 48 million particles per GPU



Total time comparison

- Ran on NERSC's Perlmutter.
- XGCm 3 times faster than XGC for adiabatic electron case, 21% faster for kinetic electron case.

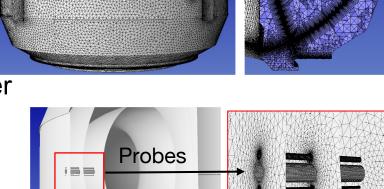


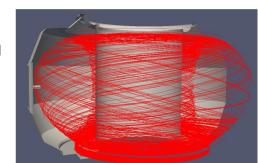
PUMIPic based GITRm Impurity Transport Code

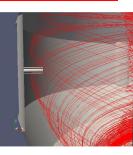
Incorporates impurity transport capabilities of GITR

 3D mesh for cases including divertors, tiles, limiters, specific diagnostics/probes etc.

- Status
 - Physics equivalent to GITR
 - Multi-species capabilities developed
 - Anisotropy mesh for accurate field transfer
 - Field transfer from SOLPS to 3D mesh
 - Non-uniform particle distribution
 - evolves quickly in time
 - Load balancing particles via EnGPar
 - Distance to boundary for sheath E field
 - Post-processing on 3D unstructured mesh

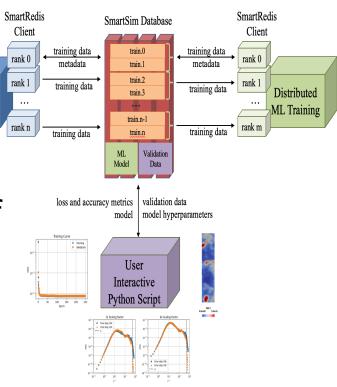






In Situ Machine Learning During Simulations

- Simulation data too large to save
 need Online Machine Learning
- Dynamic PDE data stream provides more and better training data
- Training using Smartsim/SmartRedis
- Clustered and co-located deployment of components utilizing CPU and/or GPU
- Scalable: negligible overhead on simulation
- Data parallel training with Horovod and PyTorch DDP
- No dependency on analysis code/ARCH (tested with PHASTA (legacy) and libCEED (ECP) on Aurora and Polaris)



CFD

Simulation

Online training with user interactive script

R.Balin et al., In Situ Framework for Coupling Machine Learning with Application to CFD, https://doi.org/10.48550/ arXiv.2306.12900

Mesh Related AI/ML Developments

Robust feature detection/processing

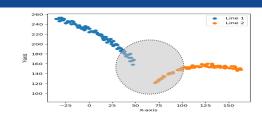
- Physics-based and AI/ML sensors: neural network processes fragmented/noisy data
- Application: anisotropic diffusion transport in fusion devices, ground line dynamics in ice sheets

Physics informed material models

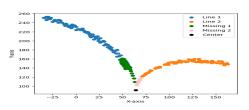
Machine learned constitutive models can reduce runtime cost of upscaling FEM simulations by orders of magnitude while retaining 80% of accuracy.

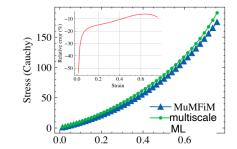
ML Agents for automated hex meshing

Reinforced learning agent decomposes CAD modes into regions suitable for hexahedral mesh generation

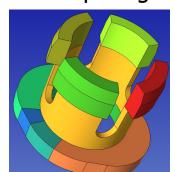


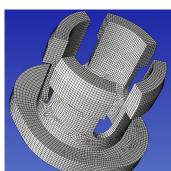
Improve sensor data





Comparing ML to Multiscale





Run the latest Simmetrix and PUMI software on RPI systems

We will help you run the latest Simmetrix and PUMI model preparation, mesh generation, and adaptation tools on **your problem** using HPC systems at RPI.

Contact Cameron Smith in Slack, during Speed-Dating, or via email at smithc11@rpi.edu for more information.

